CERN/SPC/1084/Rev. CERN/FC/6096/Rev. CERN/3294/Rev. Original: English 26 May 2017

Annual Progress Report 2016

of the Organization for the sixty-second financial year

Action to be taken		Voting Procedure
For discussion	SCIENTIFIC POLICY COMMITTEE 304 th Meeting 12-13 June 2017	-
For recommendation	FINANCE COMMITTEE 360 th Meeting 13-14 June 2017	Simple majority of Member States represented and voting and at least 51% of the con- tributions of all Member States
For approval	COUNCIL 185 th Session 15-16 June 2017	Simple majority of Member States represented and voting

Annual Progress Report GENEVA, June 2017

Table of contents

Ι.	EXECUTIVE SUMMARY	
П.	SUMMARY OF REVENUES AND EXPENSES	11
1.	SUMMARY OF REVENUES AND EXPENSES BY ACTIVITY	13
2.	OVERVIEW OF REVENUES	
3.	OVERVIEW OF EXPENSES	16
4.	EXPENSES BY SCIENTIFIC AND NON-SCIENTIFIC PROGRAMMES	18
Ш.	SUMMARY OF FACTS AND KEY PERFORMANCE INDICATORS (KPIs)	19
IV.	APPENDICES	23
1.	DETAILS OF ACTIVITIES AND PROJECTS (FACT SHEETS)	24
2.	FINANCIAL FIGURES	
2.1.	EXPERIMENTS (CERN'S CONTRIBUTION TO THE COLLABORATIONS AND EXPERIMENTS ON SITE) AND ACCELERATORS	79
2.2.	NON-SCIENTIFIC PROGRAMME (INFRASTRUCTURE AND SUPPORT SERVICES)	
2.3.	PROJECTS (CONSTRUCTION, R&D) MULTI-ANNUAL PROJECTS	81
2.4.		
3.	SUMMARY OF EXPENSES BY NATURE	
4.		
	CARRY-FORWARD	
5.	EU-SUPPORTED PROJECTS	92
5. 6.	EU-SUPPORTED PROJECTS	92 101
	EU-SUPPORTED PROJECTS	92 101 103

I. EXECUTIVE SUMMARY

Introduction

2016 was an excellent year for CERN, with unprecedented performance of the accelerator complexand many other accomplishments over the full spectrum of the Organization's activities. It was also a year of changes. The new CERN management began its mandate, and a new organisational structure was introduced: some modifications were implemented to the existing three sectors (for Research and Computing, Accelerators and Technology, and Finance and Human Resources), and a fourth one, for International Relations, was added. The new sector gathers together the activities relating to relations with the Member States, the ongoing geographical enlargement of CERN through the addition of new Member and Associate Member States, and Education, Communications and Outreach. The five-yearly review of the financial and social conditions of the members of the personnel had been completed at the end of 2015, and its implementation got under way in 2016.

This Annual Progress Report follows the revised layout adopted last year, and introduces for the first time a section on Key Performance Indicators (KPI), as recommended by the External Auditors. Their number and scope will be expanded in the future.

Main scientific achievements

The scientific programme of the Laboratory is based on three pillars: (1) full exploitation of the LHC, the highest-energy collider in the world, including operation of the LHC with nominal parameters, as well as construction and installation of LHC upgrades; (2) a scientific diversity programme at lower energies, serving a broad community,

profiting from the versatility of the injector chain and ranging from radioisotope studies to antiproton and fixed-target physics; also included is participation in accelerator-based neutrino projects outside Europe, mainly through R&D on neutrino detectors and construction of cryogenic components; (3) preparing for the future, with a vibrant accelerator R&D programme and design studies towards colliders at the energy frontier that might follow the LHC, as well as exploration of future opportunities for scientific diversity. These are now discussed in turn.

<u>LHC</u>

The accelerator performed remarkably well throughout the year, despite a number of set-backs such as a power cut caused by an inquisitive stone marten, and beam intensity limitations due to vacuum problems in the SPS internal beam-dump. The latter issue limited the number of bunches that could be injected, and a replacement has been prepared that will be installed for 2017. Nevertheless, the LHC surpassed its design luminosity of 10^{34} cm⁻²s⁻¹ during the year, with a peak of ~1.5 × 10^{34} cm⁻²s⁻¹ reached at the ATLAS and CMS interaction regions. The machine availability was also excellent, with a strong increase of the beam availability to an average of 50% of the scheduled time for physics over the year. As a result, the integrated luminosity delivered to ATLAS and CMS was ~40 fb⁻¹ in proton-proton collisions, over 50% more than the initial target and greater than for all the previous years combined. The pp run was followed by a month of running for heavy ion physics, with p-Pb collisions in a number of different configurations: at 5 and 8 TeV, and with the Pb ions circulating in either direction (particularly interesting for the experiments with asymmetric acceptance, ALICE and LHCb). At the end of the year a test was made with two sectors of the machine increasing the current of the dipole magnets towards that required for the nominal energy of 14 TeV. Although this target was not achieved, useful data were taken concerning the training quenches that are required to reach nominal energy.

The LHC experiments took data efficiently throughout the year, with more than 90% of the delivered luminosity used in physics analyses. ATLAS and CMS demonstrated that they could operate at a pile-up level of about 24 concurrent interactions per beam crossing, with tails of up to about 40 (the detectors were designed for about 23 pile-up events per crossing). Several precision measurements were made with the Run 1 data, including few-percent measurements of inclusive cross-sections that challenge the precision of predictions from theory, with next-to-next-to-leading order (NNLO) calculations needed in many cases. Theory has kept up, with a huge growth of such NNLO calculations over the past months. Another example was the first measurement of the W boson mass at the LHC (by ATLAS), which matches the precision of earlier measurements at other colliders. The large data set of Run 2 will allow such precision studies to progress further, as well as providing a rich resource for searches for physics beyond the Standard Model. No conclusive signs of such new physics have been observed by ATLAS and CMS so far, with the excess of events in the di-photon spectrum at 750 GeV that was seen in 2015 not being confirmed with the new data. The Higgs boson, discovered in Run 1, has been seen in the 13 TeV data at the rate expected for the Standard Model particle, with a significance approaching 10o per experiment. As the only fundamental scalar, the

Higgs boson is profoundly different from the other known elementary particles, and the precise measurement of its properties, including couplings and rare decays, is one of the main goals of Run 2.

The instantaneous luminosity in LHCb was levelled to $4x10^{32}$ cm⁻²s⁻¹, giving a total of around 1.9 fb⁻¹ for the year. With the increased cross-section for beauty and charm hadron production that comes with the higher energy, this data sample contains a larger number of decays than collected in Run 1. LHCb made excellent progress in 2016 in the study of flavour physics. An example was the first observation of the ultra-rare $B^0 \rightarrow K^+K^-$ decay, with a branching ratio of 8 \times 10⁻⁸, the rarest purely hadronic beauty decay ever observed. ALICE continued the study of heavy ion collisions, probing the guark-gluon plasma that is formed when nuclear matter is produced in conditions of high temperatures and high density. For example, the ALICE collaboration has discovered that the production of J/psi mesons in central Pb-Pb collisions is less suppressed by nearly a factor of four at LHC energy than at RHIC energy. The study of the p-Pb data taken in 2016 will be crucial for a deeper understanding of the underlying physics. Large local distortions due to ion backflow were seen in the Time Projection Chamber (TPC) detector but were mitigated with the implementation of a dynamic correction scheme originally developed for the upgrade. All four experiments now take part in the heavy ion running, giving breadth to the physics programme, from the observation of gamma-gamma scattering in ATLAS to results from LHCb using its SMOG gasinjection system to study ion collisions in fixed-target mode. In total there were over 300 scientific publications from the LHC experiments during the year and about 2,500 PhD students, broken down as shown in the KPI tables in Section III.

Computing for the LHC broke a number of records, due to the larger than expected data set and pile-up. Almost 50 PB of data were recorded, and the global transfer rate reached peaks of 55 GB/s (a factor 2.5 higher than in Run 1). The worldwide LHC Computing Grid now comprises 170 sites over 42 countries, providing about 700 PB of storage and running up to 2 million jobs per day. The experiments made big strides in reducing their demand for computing resources by minimising the number of copies, delaying processing and optimising the software. Nevertheless, concern has arisen for the coming years due to the excellent LHC performance and consequent increase in demand that is expected to exceed the pledged resources (which are based on a flat budget model). Looking further ahead to the HL-LHC era, there will need to be an increase in storage of about a factor of 10 and an increase in CPU power of about a factor of 60, so that mere technology evolution will probably not be enough. The HEP software foundation has been set up to explore possible improvements in the software, making best use of features of modern processors such as parallelism, while other initiatives are exploring new models for the hardware infrastructure (e.g. virtual data clouds and associated services, high-performance computing, etc.).

Full exploitation of the LHC is the highest priority of the European Strategy for Particle Physics (ESPP). In 2016, the Council formally approved the high-luminosity upgrade, HL-LHC, and its Cost-to-Completion, as well as a European Investment Bank credit facility that will allow the project to be financed within a constant CERN Budget. HL-LHC involves a major upgrade, in particular, of the regions around ATLAS and CMS, to enable an increase in instantaneous luminosity to at least five times the design value. The

aim of the LHC injectors upgrade (LIU) is to increase the injectors' reliability, lifetime and beam intensity for the HL-LHC era. Good progress was made, with the new Linac4 achieving its nominal energy of 160 MeV. In the R&D for HL-LHC, the 2 m-long model of an 11 T dipole, using superconducting Nb₃Sn, reached a magnetic field of 12.5 T, and a test of the first full cross-section triplet quadrupole reached a similar peak field, which is beyond the design value. The second cost and schedule review of the LIU and HL-LHC projects was successfully completed in October. The major Phase I upgrades of the ALICE and LHCb experiments are proceeding according to plan, ready for installation in the next long shutdown (LS2). For ATLAS and CMS, both the Phase I upgrades, as well as Phase II upgrades to allow the experiments to benefit fully from the HL-LHC, have made good progress, and the first Phase II Technical Design Report has been submitted.

Scientific diversity

CERN's scientific diversity programme exploits the unique capabilities of the accelerator complex, with the PS booster, PS and SPS providing beams to a variety of facilities and experiments, in parallel to their roles as injectors to the LHC. During the year the availability of the injector chain was very good, ranging from 97% for Linac2 to 90% for the PS. A capacitor failure involving the PS power supply occurred in May; it was repaired, and replacements have been ordered for 2017. Despite the problem with the SPS internal beam dump mentioned earlier, over 80% of the expected protons were delivered to the experiments and test beams in the North Area.

The Antiproton Decelerator is a unique facility in the world, providing low-energy antiprotons for precise spectroscopy and gravitational measurements, in particular via the production of antihydrogen atoms. There are five experiments running (AEgIS, ALPHA, ASACUSA, ATRAP and BASE) and one in preparation (GBAR). In 2016 ALPHA provided the first measurement of the spectral lines of antihydrogen, thus opening the door to precision spectroscopy and new tests of CPT symmetry. The ASACUSA experiment carried out the most precise measurement of the antiproton-to-electron mass ratio to date. 2016 saw the start of commissioning of the new ELENA ring, which will reduce the antiproton energy to 100 keV, increasing the trapping efficiency of the experiments by one to two orders of magnitude.

At the SPS, the COMPASS experiment switched in 2016 to measurement of exclusive processes for generalised parton distribution studies, using a muon beam and a 2.5 m-long liquid hydrogen target. Following the repair of its vertex magnet, NA61 continued its study of heavy ion collisions in fixed-target mode, as well as measuring particle production in targets used for the JPARC and Fermilab neutrino projects. NA62, which is devoted to the study of very rare kaon decays as a window on new physics, completed the transition from commissioning to physics data taking and recorded a data set corresponding to almost 10% of the total required sample, with detector performance in line with expectations. A new experiment, NA64, made first searches for dark sector particles, providing the interesting exclusion of possible dark-matter candidates with its first data. The UA9 experiment made major progress in demonstrating crystal collimation as a promising way to remove the beam halo in the LHC proton beams.

CAST started a new three-year programme in 2016, searching for solar chameleons (postulated candidates for dark energy) and dark

matter axions using three new sub-detectors, which have undergone commissioning and are ready for data taking in 2017. CLOUD, the East Area experiment studying cloud formation using a proton beam from the PS, focused on two topics: pure biogenic nucleation and growth under realistic environmental conditions, and anthropogenic organics nucleation and growth under polluted urban conditions.

ISOLDE, CERN's radioactive ion beam facility, carried out 46 successful experiments in 2016, with beam time spread between nuclear structure physics, nuclear astrophysics, materials science and biophysics studies. A highlight was the study of the charge exchange reaction ⁷Be(n,p), designed to shed light on the cosmological lithium problem. This was the first joint ISOLDE-n_TOF experiment and constitutes the first direct measurement of this reaction in the range of interest of Big Bang nucleosynthesis. The main breakthrough of the year was the completion of the installation of the first phase (two cryomodules) of HIE-ISOLDE, allowing a large variety of beams to be accelerated to 5.5 MeV per nucleon. Due to limited resources, hard choices had to be made, and the proposal to move the TSR storage ring to ISOLDE will not go ahead.

The Neutrino Platform was set up at CERN a few years ago to act as a focal point for the European neutrino community involved in accelerator-based projects in the US and Japan. Activities include R&D on detector technologies, construction of the first cryostat for the DUNE detector at the Long-Baseline Neutrino Facility (LBNF) in the US, and provision of a test-beam facility. Concerning the latter, major progress was made last year with the completion of the EHN1 hall extension in the North Area. Construction of the cryostats for the two liquid-argon detector prototypes (single- and double-phase) for the DUNE experiment made significant progress. The refurbishment of the two ICARUS modules is nearing completion, and the detector will be shipped to Fermilab in spring 2017 to participate in the shortbaseline neutrino programme there. Other activities include the construction of the Baby-MIND spectrometer for the WAGASCI neutrino experiment in Japan. To support these efforts, and complement them with physics studies, a neutrino group was set up in the EP department, and a task force for neutrino studies was established in the TH department.

Preparing for the future

The studies towards future colliders at the energy frontier and those of future opportunities for scientific diversity are focused on providing input for the next update of the European Strategy for Particle Physics. The ESPP will get under way towards the end of 2018, with a completion date now set for spring 2020. At the energy frontier, activities include the design studies for the CLIC (linear) and FCC (circular) colliders and R&D towards high energy accelerators, mainly through the development of high-field superconducting magnets and the AWAKE project.

The parameters for a staged implementation of CLIC, starting at 380 GeV for Higgs and top physics and upgradeable to 3 TeV in further stages, have been refined, based on an overall power and cost optimisation exercise for the initial stage. The CTF3 programme was brought to a successful conclusion, proving the CLIC two-beam acceleration concept. The CTF3 80-220 MeV linac will be available as a new stand-alone user facility, known as CLEAR (CERN Linear Electron Accelerator for Research), from 2017. The Linear Collider Detector (LCD) project teams performed physics and detector studies for CLIC, in close cooperation with the teams working on the

corresponding ILC activities. R&D was actively pursued on pixel modules for the vertex detector and the main tracker. 2016 marked a gradual change in the LCD activities to explore synergy with high-priority projects such as detector upgrades for HL-LHC.

The FCC collaboration has developed an optimised baseline for the overall layout of a hadron collider with a 97.75 km circumference and has established full-ring closed optics solutions for both hadron (FCC-hh) and lepton (FCC-ee) colliders. A working group has been put in place to focus on the High-Energy LHC option, a ~ 28 TeV proton-proton collider using the FCC-hh magnet technology in the current LHC tunnel. The design and the comparative analysis of options for 16 T magnets has further advanced within the H2020 EuroCirCol project, and a world-wide effort to develop Nb₃Sn wire to FCC specifications has been launched. In a combined effort with CLIC and external partners, developments toward higher-efficiency klystrons are progressing well. For FCC-hh, a new reference detector scenario based on unshielded solenoids has been developed, allowing a significant reduction of shaft and cavern dimensions. For FCC-ee, a baseline physics operation scenario with target luminosities for energies between 88 and 370 GeV has been defined.

The AWAKE experiment studies proton-driven plasma wakefield acceleration with target accelerating gradients of the order of few GeV/m, which could lead to very compact designs for future accelerators. A major milestone was reached during the first physics run at the end of the year, with the observation of self-modulated instabilities of the SPS proton bunches in a 10 m-long plasma cell. Preparation for the next phase, the acceleration of an injected electron beam, is ongoing. A "Physics Beyond Colliders" study group was established in 2016, to investigate future opportunities at CERN for the scientific diversity programme. Its mandate is to explore the unique opportunities offered by CERN's rich accelerator complex to address outstanding questions in particle physics through projects that are complementary to high-energy colliders and other efforts worldwide. Ideas presented at the kick-off meeting in September 2016 included a beam-dump facility at the SPS, at which the proposed SHiP experiment (or others) would study hidden particles, proton electric-dipole moment measurements using a small storage ring, searches for axions, and ultra-rare decays of known particles. The study should conclude with a report by the end of 2018, in time for the update of the ESPP.

Theory

At the beginning of the year, theoretical physics activities at CERN were organised within a separate department, TH, in the Research and Computing sector. Research in TH has thrived throughout the year in string theory, quantum field theory, physics of the Standard Model and beyond the Standard Model, QCD, collider physics, physics of heavy flavours, lattice field theory, high-temperature quantum field theory, heavy ions, cosmology and astroparticle physics, leading to 262 original publications issued as TH preprints. The TH department continues to serve as a vibrant reference centre where scientists can discuss and exchange ideas, and as a meeting place for the international community, hosting 770 scientists in 2016 (including associates, paid and unpaid visitors), as well as offering an intense programme of seminars, institutes and workshops. Theorists made a fundamental contribution to working groups on LHC physics, led the investigation of the physics opportunities at a

100 TeV hadron collider in the context of the FCC study, and played a leading role in launching new physics research initiatives in the context of the Neutrino Platform and Physics Beyond Colliders studies.

Other Activities

Significant progress was made in 2016 in areas other than the core scientific programme. A few highlights are described below.

Geographical enlargement

A three-pronged strategy for geographical enlargement was presented to the Council in March 2016 by the new Management. In the course of the year, Romania became CERN's 22nd Member State, Cyprus joined as an Associate Member State in the pre-stage to Membership, and Ukraine became an Associate Member State. Agreements were signed with Slovenia for Associate Membership in the pre-stage to Membership and with India for Associate Membership. Lithuania's application for Associate Membership reached the final stages of the process. International Cooperation Agreements were signed with Latvia and Qatar.

Education, communications and outreach

CERN hosted 142 protocol visits and events in 2016 (representing a 13% increase on 2015), including visits by five heads of state or government. A design study for a CERN alumni programme was completed, with the formal launch expected in 2017. Outreach was significantly strengthened, with a record 120,000 participants (a 12% increase on 2015) in a total of 5,048 organised visits, as well as an estimated 70,000 visitors to the on-site exhibitions. The travelling

exhibitions in Austria, the Czech Republic, France, Georgia, Italy, Lithuania and Portugal attracted some 100,000 visitors. 35 teacher programmes were attended by 953 participants, bringing to more than 10,000 the number of high school teachers having taken part in the programmes since they began in 1998. S'Cool LAB welcomed 5,877 visitors. In 2016, CERN featured in 145,000 press cuttings worldwide and received 628 journalists on site. There were 4 million unique visitors to the core websites, and a strong presence was maintained on social media, with 1.7 million mentions of CERN and the LHC.

Knowledge transfer

Knowledge transfer activities continued to be pursued energetically, with seminars on various topics and the distribution of communication material. The KT fund received a record number of 13 applications in 2016, and the network of BIC (Business Incubator Centres) was joined by a new one in Italy, bringing the total to nine. The incubators have hosted 16 companies using CERN technologies so far. A new organisational structure for medical applications activities was implemented at the beginning of 2016.

Safety, health and the environment

Protecting people, the environment and CERN's infrastructure is a top priority for the Management. In the new organisational structure, the medical service and fire brigade joined HSE (the occupational Health and Safety and Environmental protection unit). A tripartite agreement for mutual assistance in emergency rescue operations was signed with France and Switzerland. Resources were secured within the MTP to upgrade the SPS fire protection system to the best

standards during LS2. Radioactive waste management has been progressing at full speed, with 1,200 m³ of low-level-radioactivity waste eliminated during the year, four times more than was produced. With the goal of making the Laboratory a model for an environmentally-aware scientific research infrastructure, a CERN Environmental Protection Steering (CEPS) board has been established, which will define objectives and implementation priorities for 11 specific topics.

Details on the number of occupational accidents are given in Chapter III and Appendix 7.

Infrastructure consolidation and civil engineering work

The consolidation of the Globe of Science and Innovation was completed as planned, slightly below budget. The North Area extension for Neutrino Platform activities was also completed. Civil engineering consultancy contracts for the HL-LHC work were placed, and the construction tendering process was launched. The annual site consolidation programme was carried out as planned.

Human Resources

Following the approval of the measures proposed in the framework of the five-yearly review of the financial and social conditions of members of the personnel by the Council at the end of 2015, 2016 saw their implementation in two stages. In a first stage, on 1 January, the diversity-related measures, which included extended recognition of registered partnerships, improved conditions for parental leave, support for dual-career couples, enhancement of the Saved Leave Scheme and extension of the teleworking scheme, were implemented. The second stage of implementation, on 1 September, concerned a new career structure, including a new salary grid and a new performance appraisal and career evolution programme based on a less onerous system called MERIT (Merit Evaluation and Recognition Integrated Toolkit). As for learning and development (L&D), integration of the learning needs inventory as a core process and further streamlining and modernisation of the training offer, have enhanced the overall quality of L&D.

Some 1,600 young people were trained in 2016, including around 750 fellows, 278 summer students from 87 countries, and about 200 technical students. A grand total of 5,800 participants were registered for all L&D courses. Over 130 new staff members were selected. Several outreach events were organised to ensure that CERN is visible in the Member States and is identified as an employer of choice for students, graduates and professionals alike.

Budget Position of the Organization

In the course of the annual planning exercise, the new Management reviewed the spending profile for 2016 thoroughly. Consequently, a Revised Budget was presented as part of the Medium Term Plan in June 2016. For this reason, the financial tables and figures in this Annual Progress Report show not only the Final Budget published at the end of 2015, but also the Revised Budget, and the Budget Out-Turn is compared to the revised figures.

The Revised Budget reprofiled about 30 MCHF of the Final Budget to take into account a more realistic execution versus time of projects and other activities. The 2016 Budget Out-Turn balance is 55.4 MCHF higher than forecast in the Revised Budget, mainly due to 50 MCHF lower expenses. This reduction in expenses is mainly attributable to the Management's continuous efforts to optimise resources and reduce the budget deficit, as well as to the favourable impact of the CHF-EUR exchange rate and to a small amount of reprofiling in the spending for certain consolidation and non-LHC activities. Significantly less postponement of expenses to future years has been done than in previous years, thereby mitigating concerns about the timely execution of the scientific programme. In particular, the resources allocated to LHC operation and to the LHC upgrades in 2016 were spent as anticipated.

The Organization's financial position at the end of 2016 shows a significant improvement compared to expectations, with a cumulative budget deficit of -118.4 MCHF, about 93 MCHF lower than anticipated in the Final Budget, and comparable with the cumulative balance at the end of 2015 (-118.1 MCHF).

An overview of revenues and expenses is given in section II, while the details of the various activities and budget headings are reported in section IV.

II. SUMMARY OF REVENUES AND EXPENSES

1. SUMMARY OF REVENUES AND EXPENSES BY ACTIVITY

Figure 1: Summary of Revenues and Expenses by Activity

(in MCHF, rounded off)	Final 2016 Budget CERN/FC/5955 ²	Revised 2016 Budget CERN/FC/6011	2016 Out-Turn CERN/FC/6096/Rev.	Variation of 2016 Out-Turn with respect to Revised 2016 Budget		
	(2016 prices)	(2016 prices)	(2016 prices)	MCHF	%	
		(a)	(b)	(c)=(b)-(a)	(c)/(a)	
REVENUES	1 227.5	1 233.1	1 238.0	5.0	0.4%	
Member States' contributions	1 119.7	1 119.0	1 119.0	0.0	0.0%	
Associate Member States' contributions	7.6	8.2	8.4	0.3	3.4%	
Contributions anticipated from new Associate Member States	3.5					
EU contributions	14.4	19.7	17.6	-2.1	-10.6%	
Other revenues	82.4	86.2	93.0	6.8	7.9%	
EXPENSES	1 236.0	1 203.6	1 153.2	-50.4	-4.2%	
Scientific programmes	506.7	489.0	459.7	-29.3	-6.0%	
Infrastructure and services	280.6	301.8	278.6	-23.2	-7.7%	
Centralised expenses	193.1	181.3	185.0	3.6	2.0%	
Projects and studies	255.7	231.5	229.9	-1.5	-0.7%	
BALANCE						
Annual balance	-8.5	29.5	84.8	55.4		
Capital repayment allocated to the budget (Fortis, FIPOI 1, 2 and 3)	-25.1	-25.1	-25.1	0.0		
Recapitalisation Pension Fund	-60.0	-60.0	-60.0	0.0		
Annual balance allocated to budget deficit	-93.6	-55.6	-0.3	55.4		
-Cumulative balance ¹ 118.1	-211.7	-173.7	-118.4	55.4		

¹ The cumulative balance of -118.1 MCHF is the accumulated budget deficit at the end of 2015 as stated in the Financial Statements for 2015 (CERN/FC/6001, page 19).

² The breakdown of expenses by activity follows the structure introduced in the MTP 2016 (CERN/FC/6011).

2. OVERVIEW OF REVENUES

Figure 2: Total Revenues

(in MCHF, rounded off)	Final 2016 Budget CERN/FC/5955	Revised 2016 Budget CERN/FC/6011	2016 Out-Turn CERN/FC/6096/Rev.	Variation of 2016 Out-Turn with respect to Revised 2016 Budget		
	(2016 prices)	(2016 prices)	(2016 prices)	MCHF	%	
		(a)	(b)	(c)=(b)-(a)	(c)/(a)	
REVENUES	1,227.5	1,233.1	1,238.0	5.0	0.4%	
Member States' contributions	1,119.7	1,119.0	1,119.0	0.0	0.0%	
Associate Member States' contributions	7.6	8.2	8.4	0.3	3.4%	
Contributions anticipated from new Associate Member States	3.5					
EU contributions	14.4	19.7	17.6	-2.1	-10.6%	
Additional contributions	14.6	16.8	13.6	-3.1	-18.7%	
for LINAC4, HIE-ISOLDE, ELENA, AWAKE, CLIC, IdeaSquare, FAIR, CESSAMag	14.6	16.8	13.6	-3.1	-18.7%	
Personnel paid from team accounts	11.7	12.9	11.8	-1.2	-8.9%	
Personnel on detachment	0.9	1.0	0.9	0.0	-5.1%	
Internal taxation	28.5	30.0	31.5	1.4	4.7%	
Knowledge transfer	1.1	1.7	1.9	0.3	14.8%	
Other revenues	25.5	23.8	33.2	9.5	39.9%	
Sales and miscellaneous	5.7	6.7	11.5	4.8	71.5%	
SCOAP3 revenues	4.3	4.3	4.9	0.6	13.9%	
OpenLab revenues	2.7	2.7	2.3	-0.4	-14.3%	
Financial revenues	2.0	2.0	6.7	4.7	233.9%	
In-kind ¹	4.9	2.0	1.9	-0.2	-8.9%	
Housing fund	6.0	6.0	6.0	0.0	-0.7%	

¹ Theoretical interest on the FIPOI loan.

Comments on Figure 2:

Outstanding Member State' contributions for 2016 are not taken into account in the revenues in Figure 2, but are shown in the KPI section.

Romania became a Member State on 17 July 2016 and paid 75% of its theoretical Member State contribution (2 MCHF) for the first quarter of 2016 and 100% of its actual Member State contribution (8.2 MCHF) for the remaining part of the year, in accordance with Council Resolution CERN/3189/RA.

Cyprus and Ukraine became Associate Member States in 2016 and paid 10% of their theoretical Member State contributions for 2016.

The revenues for EU projects are higher than in the Final 2016 Budget due to new proposals submitted and accepted in the framework of Horizon 2020. For more details on EU projects, please refer to Chapter IV.5.

The "Financial revenues" heading includes gains and losses resulting from currency exchange-rate fluctuations.

The in-kind revenue resulting from the 0% interest on the FIPOI loan reflects the advantage at the current market interest rate, offset by the corresponding expense.

3. OVERVIEW OF EXPENSES

Final 2016 Budget Revised 2016 Budget 2016 Out-Turn Variation of 2016 Out-Turn with respect to Revised 2016 Budget CERN/FC/6096/Rev. (in MCHF, rounded off) CERN/FC/5955³ CERN/FC/6011 (2016 prices) (2016 prices) (2016 prices) MCHF % (c)=(b)-(a) (c)/(a) (a) (b) EXPENSES 1 236.0 1 203.6 1 153.2 -50.4 -4.2% Running of scientific programmes and support 980.4 972.1 923.2 -48.9 -5.0% Scientific programmes 506.7 489.0 459.7 -29.3 -6.0% LHC (machine, detectors and computing, including spares and consolidation) 282.8 260.8 259.9 -0.9 -0.3% Non-LHC physics and scientific support 83.4 83.3 68.2 -15.1 -18.1% Accelerators and areas (including consolidation) 140.4 144.9 131.5 -13.4 -9.2% 280.6 301.8 278.6 -23.2 -7.7% Infrastructure and services 262.2 General Infrastructure, services and centralised expenses (incl. admin, international relations, safety) 249.5 246.3 -16.0 -6.1% Infrastructure consolidation, buildings and renovation -7.2 31.1 39.5 32.3 -18.3% Centralised expenses 193.1 181.3 185.0 3.6 2.0% Centralised personnel expenses 35.7 36.3 36.1 -0.3 -0.7% Internal taxation 28.5 30.0 31.5 1.4 4.7% 15.1 0.7 4.9% Internal mobility, personnel on detachment, personnel paid from team accounts 13.4 14.4 Budget amortisation of staff benefit accruals 17.3 17.3 17.3 0.0 0.0% Energy and water, insurance and postal charges, miscellaneous 82.3 70.2 65.4 -4.8 -6.8% Interest, bank and financial expenses, in-kind 15.8 13.0 19.6 6.6 50.7% Projects and studies 255.7 231.5 229.9 -1.5 -0.7% LHC upgrades 141.6 112.4 122.7 10.3 9.1% LINAC4 4.9 5.6 5.3 -0.3 -4.8% LHC injectors upgrade 45.5 37.1 0.6 1.8% 36.4 HL-LHC construction 62.9 47.3 56.1 8.8 18.6% LHC detectors upgrade (Phase 1) and consolidation 19.7 15.7 17.2 1.5 9.2% HL-LHC detectors, including R&D (Phase 2) 8.7 7.4 7.0 -0.4 -5.2% 36.6 34.6 33.4 -1.2 -3.4% Energy frontier Linear collider studies (CLIC, ILC, detector R&D) 27.9 25.1 22.2 -2.9 -11.7% Future Circular Collider study 9.4 11.2 1.8 18.7% 8.8 Scientific diversity activities 77.4 84.5 73.9 -10.6 -12.5% ELENA 13.5 11.8 10.1 -1.6 -13.9% HIE-ISOLDE 10.0 7.2 -2.1 -22.8% 9.3 CERN Neutrino Platform 16.8 17.2 22.8 5.6 32.4% 37.1 33.8 R&D (incl. EU support) for accelerators, medical applications 46.2 -12.4 -26.9% BALANCE 55.4 Annual balance -8.5 29.5 84.8 Capital repayment allocated to the budget (Fortis, FIPOI 1, 2 and 3) -25.1 -25.1 -25.1 0.0 Recapitalisation Pension Fund -60.0 -60.0 -60.0 0.0 Annual balance allocated to budget deficit -93.6 -55.6 -0.3 55.4 -Cumulative balance²-- 118.1 -211.7 -173.7 -118.4 55.4

Figure 3: Total Expenses by Activity and Balance

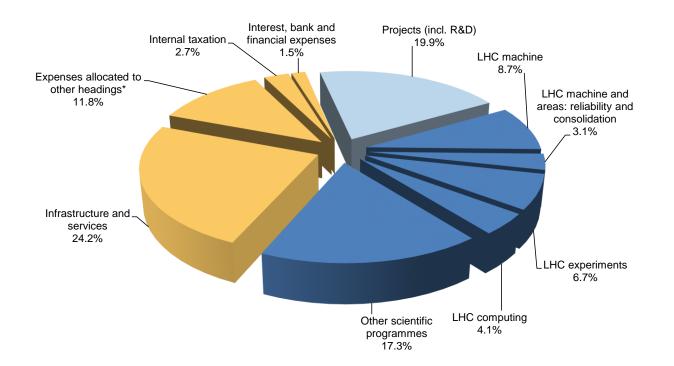
¹ Including theoretical interest on the FIPOI loan (compensated by a corresponding heading in the revenues).

² The cumulative balance of -118.1 MCHF is the accumulated budget deficit as stated in the Financial Statements for 2015 (CERN/FC/6001, page 19).

³ The breakdown of expenses by activity follows the structure introduced in the MTP 2016 (CERN/FC/6011).

Comments on Figure 3:

This improvement in the budget position compared with the Revised Budget amounts to 55.4 MCHF.


Around 52 MCHF of the difference in expenses were already anticipated and explained as the outcome of the probable revenues and expenses exercise for 2016 and were presented as part of the Final 2017 Budget (CERN/FC/6060).

The main reasons for the variation in expenses are explained below, while a detailed analysis is provided in each factsheet in Section IV.1:

- The appreciation of the CHF-EUR exchange rate contributed to the decrease in expenses of around 13 MCHF, including energy; this amount was already anticipated in the Revised 2016 Budget (CERN/FC/6011);
- The priority given to the LHC upgrades resulted in a slightly higher level of expenses than planned for the LHC Injectors Upgrade, the LHC luminosity upgrade (HL-LHC) and the Phase-1 LHC detectors upgrades;
- The focus on the LHC upgrades resulted in a shortage of personnel that generated some underspending in accelerator maintenance and consolidation and in other areas. For instance, fewer resources than planned have been spent on R&D projects such as the superconducting magnets (other than those for HL-LHC and FCC), the superconducting RF programme and the upgrade of the SM18 hall;

- Some of the expenses for non-LHC projects, such as CLIC, ELENA, HIE-ISOLDE, AWAKE, MEDICIS and FAIR, were reprofiled;
- Some of the personnel allocated to scientific support were reredeployed to the LHC experiments, the FCC project and the LHC detectors upgrade headings;
- The expenses for certain building projects, such as the construction of Building 311 (magnetic measurement laboratory) and consolidation of the polymer laboratory, were reprofiled, taking into account contract adjudications and contractual deliverables;
- The administration budget allocated to the Directorate was reduced, mainly thanks to savings resulting from the new organisational structure.

4. EXPENSES BY SCIENTIFIC AND NON-SCIENTIFIC PROGRAMMES

Figure 4: Expenses breakdown by activity

* Including: Centralised personnel expenses, internal mobility, personnel on detachment, paid but not available (3.5%), Personnel paid from team accounts (1%),

Budget amortisation of staff benefit accruals (1.5%),

Energy and water (5.2%),

Insurance, postal charges, miscellaneous (0.4%),

In-kind (theoretical interest on the FIPOI loan) (0.2%)

III. SUMMARY OF FACTS AND KEY PERFORMANCE INDICATORS (KPIs)

Note

Value

~145 000

~1.7 million

~ 4 million

	Value	Note
ACCELERATORS		
LHC pp run		
Peak luminosity	~ 1.5 x 10 ³⁴ cm ⁻² s ⁻¹	
Fraction of time in stable beams	49%	
Integrated luminosity		
ATLAS	39 fb ⁻¹	
CMS	40 fb ⁻¹	
LHCb	2 fb ⁻¹	
ALICE	13 pb ⁻¹	
Injectors: Percentage of time with stable beams		
Linac2	97%	
PS Booster	95%	
PS Machine	90%	
N_TOF	89%	
SPS Fixed Target	92%	
EAST Area North Branch	88%	
EAST IRRAD-CHARM	89%	
AD (Antiproton Decelerator)	89%	
25 ns beam for LHC (standard & BCMS)	~ 91%	
LHC lons	~ 95%	
SPS Machine		1
EXPERIMENTS and THEORY		2
Publications		2.1
ATLAS	106	
CMS	110	
ALICE	24	
LHCb	68	
Theory papers with at least one CERN author	262	
PhD students in LHC experiments		2.2
ATLAS	1 133	2.3
CMS	819	
ALICE	254	
LHCb	276	
LHC COMPUTING		
Detector data recorded	49 PB	
Global data transfer rates	35 GB/s	
Number of jobs per day	2 million	

	value	Note
SAFETY, HEALTH AND ENVIRONMENT PROTECTION		
Occupational accidents		3
Employed members of Personnel	103	
Accidents at work	67	
Commuting accidents	36	
Associated members of Personnel	53	
Accidents at work	34	
Commuting accidents	19	
CERN Contractors	78	
Accidents at work	75	
Commuting accidents	3	
Radioactive waste		
Received	316	4.1
Eliminated	1 200	4.2
Stored	8 613	4.3
OUTREACH		
Protocol visits	142	
Visitors at CERN		5.1
Visits	5 048	
Participants		
Requested	~300 000	
Received	~120 000	
S'Cool LAB visitors	5 877	5.2
CERN Teacher Programme		5.3
Number of programmes	35	
Number of participants	953	
Travelling exhibitions		
Number of visitors	~100 000	
Number of countries visited	7	
visitors to on-site exhibitions	~70 000	5.4

3 Further details on frequency and severity rates can be found in Appendix 7

- 4.1 Volume of waste received from Accelerators & Experiments (before treatment) in m³
- 4.2 Volume of eliminated waste (equivalent before treatment) in m³
- 4.3 Volume of stored waste (before treatment and including waste candidate for clearance from regulatory control) in \mbox{m}^3
- 5.1 CERN visitors are those who book a guided tour of CERN through the Visits Service
- 5.2 Not included in the number of visitors at CERN

Press cuttings

Mentions on social media

Number of website hits

- 5.3 CERN welcomed the 10,000th teacher to take part in the programmes since their launch in 1998
- 5.4 Some of these visitors are included in the total number of visitors, since visitors taking part in the guided tours of CERN often also visit the exhibitions

1 A careful operation strategy was put in place to deliver at least 80% of the protons to all experiments and test beam in the North Area despite the occurrence of several issues

- 2 Numbers of publications and PhD students are given here for the four main LHC experiments only. They will be expanded in the future to reflect the full richness of CERN's
- 2.1 Physics publications for which preprint date is within 2016
- 2.2 Number of PhD students in January 2017, unless specified
- 2.3 Number of PhD students at 31 December 2016

Annual Progress Report 2016

	Value	Note
REVENUES		
Percentage of outstanding contributions		6
Member States	1.6	
Associate Member States	4.2	
Associate Member States in the pre-stage to		
Membership	15.3	
Percentage of contributions received on time		
Member States	86.2	
Associate Member States	74.6	
Associate Member States in the pre-stage to		
Membership	0.0	
PROCUREMENT & KNOWLEDGE TRANSFER		
Orders		
Invitations to tender (>200 kCHF)	93	
Number of orders		
>= 200 kCHF	120	
between 1 and 200 kCHF	12 693	
< 1 kCHF	12 495	
Total adjudications in kCHF	291 273	
Industrial return		
Balanced countries for supplies	5	
Balanced countries for industrial services	6	
Very poorly balanced countries for supplies	8	
Poorly balanced countries for industrial services	21	
Knowledge transfer		
New technology disclosures	91	
KT contracts signed	42	

	Value	Note
HUMAN RESOURCES		
Resources		7
FTE paid from CERN budget	2491	
Fellows	750	
Associates for the purpose of training		
Administrative students	35	
Apprentices	20	
Doctoral students	190	
Summer students	278	7.1
Technical students	193	
Trainees	114	
Scientific Associates	43	
Project Associates	188	
Users	11 821	
Visiting scientists and other associated		
personnel	954	
Staffrecruitment		
Vacancies published	147	
Applications received	12 193	8.1
Fraction of LD contracts	31%	8.2
Training		9
Courses	251	
Sessions	508	
Days of training	13 700	
Participants	5 800	

6 Outstanding contributions from past years are not included

7 Figures are at 31.12.2016 unless otherwise specified

7.1 Headcount during 2016

- 8.1 Details by nationality and by gender are available in the HR Annual Personnel Statistics
- 8.2 Number of LD staff divided by total number of staff on December 31
- 9 Figures do not include safety training, academic lectures and training courses not organised by CERN

IV. APPENDICES

1. DETAILS OF ACTIVITIES AND PROJECTS (FACT SHEETS) LHC programme

1. LHC machine, reliability and consolidation

Goal	LHC machine and experimental areas	Proton run: The total integrated luminosity target is set at 100-120 fb ⁻¹ to be delivered to the high luminosity experiments during LHC Run 2. This target will be confirmed by a model, to be produced by the beginning of 2016, which will give reliable forecasts for the total achievable integrated luminosity. Special physics runs (high Beta optics) will be carried out upon approval by physics committees and depending on the production of total integrated luminosity. Lead ions: The 2016 target is to provide lead ion collisions for a month at the end of the year, eventually reaching an integrated luminosity of 10 nb ⁻¹ to the four major experiments by LS3.
	Consolidation and spares	Continuation of construction of RF spare module and purchase of RF klystrons for the LHC. The principal objectives for 2016 are the continuation of activities which do not require direct access to the LHC tunnel. These include the replacement of HVAC units, cranes and other infrastructure systems. They also include the complete separation of the normal and the secure networks for the Meyrin site with the creation of a new substation, ME91, and the replacement of the Meyrin emergency diesel generator sets. Start of the programme to replace the LHC lifts.
Achievement	5	 2016 was the first production year of Run 2. An excellent performance was achieved in the proton run, with instantaneous luminosity exceeding the nominal values by 40% (1.4 x 10³⁴ cm⁻²s⁻¹) and total integrated luminosity reaching about 40 fb⁻¹, against a 2016 goal of 25 fb⁻¹. A key ingredient in this achievement was the very high level of availability of the LHC machine, with 50% of the scheduled time spent in stable physics operation, compared to 30% in previous years. With the present performance of the machine, the proton-proton Run 2 goal of 100-120 fb⁻¹ integrated luminosity is achievable. Periods of machine development studies were carried out and a set of parameters (13 TeV-25ns, 40cm Beta*, 2,200 bunches at 1.1e11 protons per bunch) was defined to reach the performance target. The latter was achieved despite the occurrence of several technical issues, such as pressure rises in one kicker magnet in the presence of high intensity beams and the 66 kV transformer fault at LHC point 8. During the year, several special physics runs took place, including a very high Beta (2.5 km) run for Totem and special runs for LHCf. At the end of the year, a month of operation was dedicated to highly successful proton-lead ion collisions, with datataking at two different levels of energy and special runs for LHCf and LHCb. In all operating conditions (3 different machine configurations in 4 weeks), the luminosity delivered to the experiments exceeded the original request.

1. LHC machine, reliability and consolidation (cont.)

Achievements	 Before the Extended Year-End Technical Stop (EYETS), a magnet training campaign was carried out in two LHC sectors (\$34 and \$45) in order to assess the limitations and the time needed before operating the machine at 14 TeV. Amongst other topics, this assessment will be first discussed during the LHC performance workshop in January 2017, and recommendations will be provided by the CERN Machine Advisory Committee (CMAC). The EYETS is now in full swing, with lots of activities ongoing in the accelerator complex. Spares and Consolidation The RF spare module has been fully qualified in 2016, in case it needs to be exchanged with a unit of the machine. In the meantime, the construction of additional spare parts is under way, with the first cavities delivered and undergoing testing. A strategy for the exchange and refurbishment of the RF klystrons has been elaborated with the industrial supplier. Five LHC dipoles were also repaired during 2016, thus reconstituting the LHC spare magnets inventory. The repair of dipoles following the sector 3-4 incident is now complete. All magnets but one have been reconditioned or reconstructed. Only a few radiation-induced failures were observed during 2016, thanks to the implementation of previously reported successful mitigation measures, as well as to lower radiation levels (per unit of luminosity). The latter are due to reduced beta-star and crossing angle and further improved vacuum conditions. Concerning the remaining mitigation measures, the FGClite (power converter controller) production has been successfully qualified, with a first deployment in the ARC during the EYETS. The Radiation-to-Electronics (R2E) project is now focussed on equipment lifetime constraints and ongoing/future equipment developments in order to ensure reliable operation up to LS2 as well as during HL-LHC operation. Technical infrastructure consolidation requires continuous effort. The programme for the renewal of the LHC HVAC units (located
Achievements	Before the Extended Year-End Technical Stop (EYETS), a magnet training campaign was carried out in two LHC sectors (S34 and S45) in order to assess the limitations and the time needed before operating the machine at 14 TeV. Amongst other topics, this assessment will be first discussed during the LHC performance workshop in January 2017, and recommendations will be provided by the CERN Machine Advisory Committee (CMAC). The EYETS is now in full swing, with lots of activities ongoing in the accelerator complex. Spares and Consolidation The RF spare module has been fully qualified in 2016, in case it needs to be exchanged with a unit of the machine. In the meantime, the construction of additional spare parts is under way, with the first cavities delivered and undergoing testing. A strategy for the exchange and refurbishment of the RF klystrons has been elaborated with the industrial supplier.

Only a few radiation-induced failures were observed during 2016, thanks to the implementation of previously reported successful mitigation measures, as well as to lower radiation levels (per unit of luminosity). The latter are due to reduced beta-star and crossing angle and further improved vacuum conditions. Concerning the remaining mitigation measures, the FGClite (power converter controller) production has been successfully qualified, with a first deployment in the ARC during the EYETS. The Radiation-to-Electronics (R2E) project is now focussed on equipment lifetime constraints and ongoing/future equipment developments in order to ensure reliable operation up to LS2 as well as during HL-LHC operation.

Technical infrastructure consolidation requires continuous effort. The programme for the renewal of the LHC HVAC units (located in surface buildings) has been performed on schedule and within budget. The commissioning phase will take place in 2017. During the present EYETS, the lift replacement activities have started. Finally, contracts have been signed for the new 400/66 kV substation in Bois-Tollot and the new Meyrin emergency diesel generator sets.

Regarding consolidation of an environmental nature, studies were done on the removal of obsolete oil-transformers (new transformers will arrive in 2017), and the replacement of TCR coils for noise reduction in St-Genis will be finalised in 2017.

Comparison Fin and 2016 Out-Tu	•	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
LHC machine and	Personnel (FTE)	339.2	327.9	341.5	101%	2.4	104%	13.7		
experimental	Personnel (kCHF)	59,055	56,610	57,864	98%	-1,191	102%	1,254		
•	Materials (kCHF)	44,035	42,940	36,976	84%	-7,059	86%	-5,964	3,894	
areas	Total (kCHF)	103,090	99,550	94,840	92%	-8,250	95%	-4,710	3,894	
	Personnel (FTE)			3.7		3.7		3.7		
Charao	Personnel (kCHF)			669		669		669		
Spares	Materials (kCHF)	7,390	6,650	4,792	65%	-2,598	72%	-1,858	626	
	Total (kCHF)	7,390	6,650	5,461	74%	-1,929	82%	-1,189	626	
	Personnel (FTE)	65.9	74.3	82.9	126%	17.0	112%	8.6		
••••••	Personnel (kCHF)	11,030	12,400	13,119	119%	2,089	106%	719		
Consolidation	Materials (kCHF)	37,515	21,500	22,683	60%	-14,832	106%	1,183	4,674	
	Total (kCHF)	48,545	33,900	35,803	74%	-12,742	106%	1,903	4,674	

LHC experiments

2. ATLAS detector

	Fully explait the improved physics potential of LHC Dup 2, taking advantage of the higher LHC colligion energy (42,44,TeV) at nerginal
Goals	Fully exploit the improved physics potential of LHC Run 2, taking advantage of the higher LHC collision energy (13-14 TeV) at nominal luminosity, and the better performance of the ATLAS detector owing to its 4th pixel layer (IBL) and improved trigger capabilities (increased selectivity in the presence of pile-up, and rates increased to 100 kHz at level 1 and 1 kHz at HLT). Continue construction of Phase-1 upgrade projects, as well as R&D towards TDRs for Phase-2 upgrades.
Achievements	Thanks to the excellent LHC performance in 2016, ATLAS has successfully collected 36 fb-1 of pp data, more than in all the previous years combined. The high-rate and high-efficiency LHC operations in 2016 have required adjustments of the ATLAS level 1 trigger to maintain rates within the readout capabilities of the detector electronics. With the LHC bunch configuration and pile-up levels during 2016, ATLAS has been able to run at a 100 kHz level 1 trigger rate. Thanks to continuous optimisation of the high-level trigger algorithms to cope with the high pile-up, the trigger DAQ has averaged a 1 kHz average rate of output to the CERN Tier-0 computing system. The Tier-0 has struggled to keep up with processing the large data volumes despite significant improvements in 2016 and continued strong support from CERN/IT. Due to Tier-0 backlogs, several runs were processed at Tier-1 computing centres, allowing data taken two weeks before a conference to be included in the results presented. The high data rates in 2016 also challenged the offline Grid computing capacity, with large data transfers and the need for increased Monte Carlo simulation production. With the increased luminosity in 2016, the operating conditions of the 4th pixel detector layer (IBL) were carefully optimised to ensure that the average LV current stayed within safe limits. Critical reference data were obtained in lab measurements with a new X-ray irradiator. The main change and major decision was to operate the IBL warm in 2016, the operating temperature can be safely reduced back to the nominal value of -20°C. ATLAS submitted many results to the ICHEP conference based on up to 15 fb-1 of $\sqrt{s=13}$ TeV pp collisions from 2016 and 2015, and further results were released thereafter. Measurements of many different Standard Model processes demonstrated the detailed understanding of the 2016 data. The Higgs boson, discovered in Run 1, was again observed in the two "discovery channels" H \rightarrow yy and H \rightarrow 41 at the rates expected in the Standard Model. Many n

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (¢)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	78.7	80.4	92.8	118%	14.1	115%	12.4		
Personnel (kCHF)	15,375	15,555	16,515	107%	1,140	106%	960		
Materials (kCHF)	3,335	3,335	3,527	106%	192	106%	192	103	
Total (kCHF)	18,710	18,890	20,042	107%	1,332	106%	1,152	103	

3. CMS detector

Goals		Fully exploit the improved physics potential of LHC Run 2, taking advantage of the higher LHC collision energy (13-14 TeV) at nominal uminosity, using the upgraded trigger system: this could be "The Discovery Year".										
Achievements	optimal e eventuall 70 new r the exten	CMS was ready at the start of the run with the fully upgraded trigger system. The flexibility provided by the new trigger set-up allowed the optimal exploitation of the exceptional performance of the LHC, which exceeded all the forecasts for instantaneous luminosity. CMS eventually logged 37.8 fb ⁻¹ , more than 92% of the luminosity delivered by the LHC. Efficient processing allowed CMS to submit more than 70 new results for the ICHEP conference in August, based on the first 13 fb ⁻¹ delivered from the LHC. While these early results confirmed the extended discovery reach, no significant sign of new physics has been detected with this early data. The full 2016 data set will be used to present new results at the winter conferences in 2017.										
Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments			
Personnel (FTE)	107.6	107.8	120.0	112%	12.4	111%	12.2		-			

110%

93%

107%

1,987

1,732

-255

145

145

4.	ALICE de	tector
----	----------	--------

20,365

3,895

24,260

20,365

3,850

24,215

22,352

3,595

25,947

110%

92%

107%

1,987

1,687

-300

Personnel (kCHF)

Materials (kCHF)

Total (kCHF)

Goals	In 2016, as in 2015, ALICE will collect data with proton and Pb ion beams. With protons, the main objective is a run with a luminosity of around 10 ³⁰ cm ⁻² s ⁻¹ to collect about 10 pb ⁻¹ for rare triggers, i.e. one quarter of the total luminosity of 40 pb ⁻¹ that we plan to integrate during the four years of Run 2. This will provide the same integrated parton luminosity for the pp reference data as for the 1 nb ⁻¹ Pb-Pb sample that we plan to integrate during the same period (thereby ensuring that the pp measurement does not dominate the uncertainties). For the run with Pb beams in the autumn, a decision will have to be taken on whether to dedicate it to completing the collection of the sample of Pb-Pb
	collisions or to collecting p-Pb data. Analysis of the pp and PbPb data from 2015.
Achievemer	In 2016 ALICE integrated 9.7 pb ⁻¹ of reference pp data, approaching one half of the total goal for integrated luminosity in pp for Run 2. The heavy ion run was dedicated to the collection of p-Pb data. A sample of 760 M events (about one order of magnitude larger than that collected in 2013) was recorded at the reference energy of 5.02 TeV, and about 20 nb ⁻¹ of rare triggers were collected at the maximum energy of 8.16 TeV. Issues due to the presence of large localised distortions in the 2015 TPC data have successfully been dealt with by implementing a distortion correction scheme that was originally planned for the LS2 upgrades. The 2015 Pb-Pb sample has been successfully reprocessed with the new scheme. The data analysis has proceeded, with the submission of 25 new papers and two series of new preliminary results released for two of the most important heavy-ion conferences (SQM 2016 in June and Hard Probes 2016 in September).

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	50.9	50.3	57.3	113%	6.5	114%	7.1		
Personnel (kCHF)	9,740	9,610	10,894	112%	1,154	113%	1,284		
Materials (kCHF)	1,770	1,680	1,826	103%	56	109%	146	0	
Total (kCHF)	11,510	11,290	12,720	111%	1,210	113%	1,430	0	

5. LHCb detector

Goals	Continue efficient data-taking at 4 x 10 ³² cm ⁻² s ⁻¹ and 25 ns bunch crossings. Continue detector construction for LHCb upgrade and further define objectives and methods for the HL-LHC Phase.
Achievements	The LHCb detector started data-taking in excellent shape, and the experiment managed to acquire data at 13 TeV and 25 ns bunch spacing consistently over the whole year. Thanks to exceptional efficiency from the LHC and the reliability of LHCb, we have recorded in excess of 1.7 fb ⁻¹ integrated luminosity in pp collisions and ~30 nb ⁻¹ in p-Pb and Pb-p. The new concept and improved trigger and farm strategy, better adapted to the new running conditions with increased energy and 25 ns bunch crossing, with online data stream analysis up to HLT1, allows precise and "real time" event reconstruction. The processing farm has been upgraded to cope with this exceptional physics input. The preparations for the upgrade in LS2 are progressing well, with progress being scrutinised by the LHCC and UCG. Several Engineering Design Reviews and Production Readiness Reviews have taken place, signalling the natural progress from R&D to final prototyping and production. For the HL-LHC era, LHCb is further defining its objectives, and an expression of interest for Phase-II is being finalised. Physics exploitation has continued at an intense rate. During the calendar year 64 papers were published or submitted to a journal, bringing the total scientific output of the collaboration to 356 publications. Important topics include the study of time-dependent B→hh states and B _s →D _s K from Run-1 and early Run-2 data, with extensive spectroscopy studies and the first observation of the B ⁰ →K ⁺ K ⁻ decay (a strongly suppressed decay with BR of only 8×10 ⁻⁸).

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (C)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	49.2	49.2	48.3	98%	-0.9	98%	-0.9		
Personnel (kCHF)	10,180	10,180	9,222	91%	-958	91%	-958		
Materials (kCHF)	1,495	1,420	2,117	142%	622	149%	697	16	
Total (kCHF)	11,675	11,600	11,338	97%	-337	98%	-262	16	

6. Common items, other experiments

6a. Totem detector

Goals	Pursue data-taking with large β^* (90 m and \geq 1km) and with standard optics, both standalone and in common with CMS. Complete the
Obais	upgrade operations by installing a complete timing reference system and TOF detectors in Roman Pots. Data analysis of the new data sets
	for elastic scattering, total cross-section and diffraction.
	Data-taking with large β^* (2.5 km) and standard optics was performed in standalone mode and in common with CMS. The DAQ was fully
	integrated in CMS, and data of 15.3 fb ⁻¹ were collected with standard optics together with CMS (CT-PPS, CMS-TOTEM common project).
Achievements	The timing reference system was installed in the LHC tunnel. The diamond detectors (TOF and tracking) were installed in the cylindrical
Acmevements	(horizontal) Roman Pots during a technical stop, and 2.5 fb ⁻¹ of data were collected in common with CMS with standard LHC optics. The total
	cross-section measurement at 2.7 TeV is close to being published, and the analysis of the 2.5 km β^* data taken in 2016 is steadily
	progressing. The analysis of the CT-PPS data has started together with CMS in particular QED channels (boson-boson and muon-muon
	final states).

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	5.6	5.6	4.8	85%	-0.8	85%	-0.8		
Personnel (kCHF)	1,185	1,185	1,012	85%	-173	85%	-173		
Materials (kCHF)	295	280	287	97%	-8	102%	7	3	
Total (kCHF)	1,480	1,465	1,299	88%	-181	89%	-166	3	

6b. LHCf detector

Goals	Analysis of the data taken in 2015 and before, including joint analyses with ATLAS. Feasibility study to join p-Pb collisions.
Achievements	Analyses of neutral pion production using the Run 1 data were completed and the results were published. Analysis of the photon spectra using the 13TeV data was completed and the results will be published in early 2017. Data-taking in the p-Pb collisions using the Arm2 detector was successfully performed in November. A Monte Carlo study for the joint analyses with ATLAS was published. Discussions for data analysis are in progress.

6c. MoEDAL

Goals	To analyse the data taken in 2015, and also to redeploy sensitive MoEDAL volume for data taking in 2017.
Achievements	Since April 2015 the MoEDAL collaboration has produced two papers (JHEP 1608 (2016) 067 and one to be published in PRL) giving the world's best limits for multiply magnetically-charged monopole production. At the LHCC closed session in September 2016 we proposed to submit a letter of intent for a new MoEDAL sub-detector, for the detection of penetrating of mini-charged particles and very long-lived neutral particles. In addition, the collaboration grew to include groups from Russia (Moscow), the US (Alabama) and the UK (QMC).

6d. Support for LHC detectors

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (C)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	37.9	37.9	27.8	73%	-10.1	73%	-10.1		
Personnel (kCHF)	5,920	5,910	4,602	78%	-1,318	78%	-1,308		
Materials (kCHF)	2,395	2,375	833	35%	-1,562	35%	-1,542	230	
Total (kCHF)	8,315	8,285	5,435	65%	-2,880	66%	-2,850	230	

7. LHC detector consolidation (ended)

8. LHC computing

47,865

Total (kCHF)

Goals	 Support full worldwide workloads of the LHC experiments at nominal luminosity and data rates, including: Data archiving volumes of up to 50 PB per year, data ingest rates of close to 10 GB/s into the Tier 0. Distribution of full raw data volumes to 13 Tier-1 centres. Full reconstruction, simulation, and analysis workflows of all experiments fully supported. Full use of Wigner centre as an integral part of the Tier 0. 								
Achievements	 Full use of Wigner centre as an integral part of the Tier 0. Successfully supported the 2016 data taking and full global workflows, including responding to the significantly increased needs of computing generated by the exceptional performance of the LHC and experiments. The LHC delivered some 50% more integrated luminosity than initially anticipated, leading to significantly more demands on the computing and storage services, and new peak performance indicators in all aspects of computing: 49.4 PB of new LHC data was collected, with rates achieved of more than 500 TB per day of new data, a peak in July of 11 PB archived; the full data ingest rates from all 4 LHC experiments were supported without problems; All raw data was distributed to all 13 Tier-1 centres. In May and June record data transfer rates triggered a need to add additional hardware to the core transfer service to manage the new peak rates, which were greater than 6 GB/s out of CERN; also moved several Tier 1 sites to upgrade the LHCOPN dedicated bandwidths. Additional resources were also added to the LHCONE core backbone. The global data transfers achieved constant rates of around 100 PB/month for most of the running period; The full experiment workflows were continually optimised and supported, allowing data to be prepared for the ICHEP conference within 2 weeks; The Tier 0 was fully functional, with both sites (Meyrin and Wigner) fully active. Resources were added to the Tier 0 to ensure sufficient capacity for the prompt feedback loops of the experiments during data-taking, in response to the increased needs. Resources globally in WLCG are fully occupied at all times, and opportunistic resources allow the experiments to use significantly more capacity than that formally pledged. Concern for 2017 and 2018 has arisen, however, due to the LHC performance and the consequent increased needs of the experiments unlikely to be (formally) fulfilled by the funding agencies. 								
Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	109.5	111.0	117.2	107%	7.7	106%	6.2		
Personnel (kCHF)	22,800	22,905	23,894	105%	1,094	104%	989	750	
Materials (kCHF)	25,065 47 865	22,035	23,154 47 048	92%	-1,911 -817	105%	1,119 2 108	753 753	

105%

2,108

753

98%

-817

47,048

44,940

Other programmes

9. Non-LHC physics (experimental programme)

ning mode once the accelerator chain is fully operational after the shutdown. Analysis of data taken in previous years.
62 is devoted to the study of very rare kaon decays which offer a window of opportunity to look for new physics. Kaons are particularly presting because their decays are very well calculable in the Standard Model, so a discrepancy between the measured and predicted a may have profound consequences. In 2016 NA62 completed the transition from commissioning to data-taking and analysis. The dware improvements identified the previous year were implemented, and a major improvement of the TDAQ performance was achieved. Darticular, the full portfolio of hardware and software triggers was deployed, and a very large data set, corresponding to almost 10% of total required statistics, was written to tape. Initial analysis of the data taken indicates detector performance in line with bectations. Data-taking will continue until LS2. MPASS switched in 2016 to measurements of exclusive processes for generalised parton distributions using a muon beam and a 2.5 m.g liquid hydrogen target surrounded by a large recoil detector. The new equipment (DC5, RICH and DAQ) was commissioned cessfully. Despite the intensity limitations of the SPS, the 2016 run almost reached the originally projected luminosity. The analysis of 2015 polarised Drell-Yan data is proceeding well, and publication is targeted for spring 2017. Results from earlier data were published even papers, including the final results for the longitudinal structure function g_1 of the proton and the deuteron, fragmentation functions, the application is argeted precision spectroscopy of antihydrogen, thus opening the door to precision spectroscopy of antihydrogen, so denot the door to precision spectroscopy of antihydrogen and new tests of CPT interf. In parallel, the ASACUSA experiment carried out the most precise measurement of the antiproton-to-electron mass ratio to date. The measurements of the Weak Equivalence Principle are equally advancing: GIS commissioned the steps needed for a pulsed beam of antihydrogen, and a first measurement of the Weak Equivalence Princ
d ba t 9 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1

9. Non-LHC physics (experimental programme) (cont.)

	For example, a new 300 nm-thin entrance window made Ingrid sensitive to converted soft X-rays (~100 eV). We are confident that 2017 will be a data-taking period for all three sub-detectors. CLOUD : The CLOUD11 run in the East Hall T11 beamline from 26 September to 25 November focused on two topics: (a) pure biogenic nucleation and growth under realistic environmental conditions, and (b) anthropogenic organics nucleation and growth under polluted urban conditions. In addition, experiments from the 2015 CLOUD10 run to simulate daytime Hyytiälä boreal forest conditions were completed using the new UV sabre 3. Numerous upgrades of the CLOUD facility were made, of which the major items were an enlarged upper platform for safer access, and construction and operation of the new 400 W optical power UV sabre 3 (385 nm) to simulate daytime atmospheric NOx chemistry. Five CLOUD papers were published in high-impact scientific journals (Nature, PNAS and Science).
Achievements	ISOLDE , CERN's exotic beam facility, carried out 46 successful experiments in 2016, with a balanced distribution of beam time spread between nuclear structure studies done by nuclear ground state properties (23%), decay studies (20%) and Coulomb excitation/scattering studies (23%). Nuclear astrophysics studies (7%), materials science (11%) and biophysics and medicine (7%) accounted for most of the remaining share. The year started with the production of a ⁷ Be sample for n_TOF(EAR-2) in order to study the charge exchange reaction ⁷ Be(n,p), shedding light on the cosmological lithium problem. This was the first joint ISOLDE-n_TOF experiment and constitutes the first direct measurement of this reaction in the range of interest of Big Bang nucleosynthesis. A new method of Phase Imaging Ion Cyclotron Resonance (PI-ICR) has been successfully implemented at ISOLTRAP with the aim of improving the resolving power of mass measurement by an order of magnitude and reaching exotic species with half-lives that are a factor of ten shorter. Six successful experiments were carried out at the ISOLDE decay station, IDS, from He to Hg, inaugurating the new ISOLDE-built neutron time of flight spectrometer. The electromagnetic properties of the nuclei are determined by measuring the hyperfine spectrum, either detecting photons in COLLAPS or ions in CRIS. The former published the evolution of the Ca (A=40-52) isotopes radii in Nature Physics. The large and unexpected increase in the size of the neutron-rich calcium isotopes beyond N = 28 challenges the doubly-magic nature of ⁵² Ca and opens new intriguing questions about the evolution of nuclear sizes away from stability, which are of importance for our understanding of neutron-rich atomic nuclei. In materials science, important results concerning the nature of doping in nitride semiconductors were obtained, as were data on the surface wetting of graphene. The new Gandalph spectrometer observed the first photo-detachment of radioactive ions, and a successful examination of the

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	23.7	25.9	29.4	124%	5.7	114%	3.5		
Personnel (kCHF)	4,390	4,800	5,011	114%	621	104%	211		
Materials (kCHF)	2,165	1,800	1,811	84%	-354	101%	11	103	
Total (kCHF)	6,555	6,600	6,822	104%	267	103%	222	103	

10. Theory

Goals	World-leading research in theoretical particle physics and related fields. Support experiments and the TH community. Provide training in
	theory and resources for a wide visitor programme.
Achievements	In 2016 the CERN Theoretical Physics department (CERN-TH) successfully achieved important goals in the context of its three main missions: producing cutting-edge research in theoretical particle physics, serving the international theoretical physics community, and supporting the activities of the Laboratory. Research at CERN-TH has been thriving in string theory, quantum field theory, physics of the Standard Model and beyond the Standard Model, QCD, collider physics, This led to 262 original publications issued as CERN-TH preprints. Here are some notable examples, out of the many influential results obtained in 2016. The most precise theoretical prediction (arXiv:1602.00595) for the Higgs boson production cross-section, which is a crucial theoretical input for the physics programme of the LHC. A systematic treatment (arXiv:1605.02149) of the leading non-linear effects in the baryon acoustic oscillations, which is a key observable in cosmology to test dark energy and neutrino masses. A breakthrough (arXiv:1606.05495) in the important mathematical problem of determining the modular properties of lattice sums of indefinite signature, by exploiting insights gained in the study of instanton corrections in string theory. A precise determination (arXiv:1610.07962) of clockwork theories, which fift a mechanism for generating light particles with exponentially suppressed interactions. CERN-TH has continued to serve as a vibrant reference centre where scientists can discuss and exchange ideas, and as a meeting place for the international community. In 2016, CERN-TH hosted 770 scientists - 505 associate members of the personal (473 visiting scientists, "Graard Sub as 0265 unpaid scientific ivisitors. It offered an intense programme of seminars (about 5-8 per week), and hosted 5 TH Institutes ("Recent Developments in M-theory", "Emergent Properties of Space-time", "Chariting the Unknown", "The Big Bang and the Little Bangs", "From Quarks to Gravitational Waves"), 8 Workshops and Meetings (incluing the TVP)-Article Astrophy

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	65.8	65.1	62.0	94%	-3.8	95%	-3.0		
Personnel (kCHF)	10,250	10,305	9,635	94%	-615	93%	-670		
Materials (kCHF)	1,470	1,645	1,548	105%	78	94%	-97	31	
Total (kCHF)	11,720	11,950	11,183	95%	-537	94%	-767	31	

11. Knowledge transfer

Organise the ICTR-PHE 2016 conference and the associated Medical Applications Office brainstorming meeting.								
Contribute to the activities of the CERN Medical Applications office.								
• Run the ENLIGHT network (meeting, submitting hadron therapy projects, lobbyign for funding, running COST proposal if successful).								
 Assist Member States which express interest in medical applications (hadron therapy in particular). 								
Research suitable funding opportunities, in particular for medical applications, draft/submit projects.								
• Communication/dissemination activities (KT annual report, medical applications-related communication, ENLIGHT Highlights, medical								
applications seminars).								
 Technology and Innovation Monitor: production version deployed at EC-JRC. 								
Foster applications of new projects for the KT Fund and follow up the existing funded projects.								
Continue to develop the network of incubators concept.								
• Actively scout for more projects aimed at demonstrating the impact that CERN has on society through the dissemination of its know-how								
and technologies.								
Aerospace applications: define a strategy aimed at maximising the impact of the Organization's activities on the aerospace field.								
The ICTR-PHE 2016 conference was successfully organised (440 participants, 165 oral presentations and many scientific papers generated).								
For the first time, it included a start-up corner in the industrial exhibition, which helped promote entrepreneurship and its link with research.								
A new structure for medical applications was implemented at the beginning of 2016, including a steering group chaired by the Director of								
Accelerators and Technology and the Medical Application Project Forum (MAPF), Chaired by the Section Leader of the Medical Applications								
Section of the KT Group.								
The KT Forum met twice in 2016. The second meeting was partially dedicated to presenting the strategy for medical applications. Specifically								
for hadron therapy, a new partnership agreement has been signed with MedAustron, covering the ongoing and future support activities.								
A series of KT seminars on various topics (entrepreneurship, medical applications, aerospace applications) was launched. Over the year,								
45 news items and communication products (e.g. printed material) were published in a coordinated manner through various communication								
channels online (Bulletin, Courier, social media, CERN Website, KT website and external channels) and offline. The KT group has								
strengthened links with the ECO group and contributed to drafting the key messages related to knowledge transfer in the CERN								
Communication Strategy document.								
CERN's Technology Innovation Monitor has been integrated by the JRC in its suite of tools for innovation monitoring.								
The CERN Knowledge Transfer Fund received a record number of applications in 2016 (13). A report on the impact of the CERN Knowledge								
Transfer fund from its creation to date was compiled and distributed to the Management.								
One additional incubator (Italy) joined the network of incubators, bringing the total number to nine. 16 companies using CERN technologies								
are/have been hosted in the incubators.								
The scouting for technologies continued in 2016, in particular with the organisation of a KT Innovation Day with the Experimental Physics								
department. 2016 saw a high number of technology disclosures and contracts signed (more than 90 and 40, respectively).								
A strategy for maximising the impact of CERN's know-how in the field of aerospace was prepared and its implementation began in 2016.								

11. Knowledge transfer (cont.)

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	18.1	19.2	18.0	100%	0.0	94%	-1.2		
Personnel (kCHF)	3,470	3,385	2,816	81%	-654	83%	-569		
Materials (kCHF)	3,520	4,455	3,128	89%	-392	70%	-1,327	111	
Total (kCHF)	6,990	7,840	5,944	85%	-1,046	76%	-1,896	111	

12. Scientific support (associates, computing, R&D detectors and technical support)

Goals	 Scientific support: ESE: Involvement in the LHC experiments to be maintained for the Phase 1 upgrades and their commissioning, and the developments for Phase 2. RD53 is a common ATLAS/CMS/LCD project for developing a pixel readout chip in 65 nm CMOS in 2016. Involvement in NA62 should reduce following its successful start-up. Technological support for common developments will be maintained, and new IP blocks to be bought/supported. Production of the GBT chipset and of the Versatile Links to be done. High speed links, LowPowerGBT and VL+ development, additional effort and resources in silicon photonics highly desirable. A more radiation hard version of DC-DC converter needed, and adaptation to special needs, as well as bulk radiation-tolerant power supplies (collaboration with industry to maintain current availability). TTC PON to be finalised before LS2 if LHCb will use it. DT: Provide a centralised engineering and design office, as well as specialised workshops and facilities to design, manufacture and test prototype detector components with special attention to LHC upgrade project needs. Define the direct contribution to detector construction projects where the complexity, production time and cost in industry would be too high, or the technology does not yet have a sufficient industrial base. SFT: Assist experiments to resolve any issues that may surface in the stability and performance of their data processing software through the preparation of new LCG software releases. User workshops and surveys will be organised to collect feedback on the performance of Geant4 and ROOT during Run 2. Code reviews will be conducted to identify specific code needing improvements, including changes to new technologies. The CernVM program of work will expand to cover potential new applications, such as data preservation as a service, new HEP clients, such as AMS, as well as non-HEP projects, such as BlueBrain and Euclid. Effort on R&D will increase in order to evaluate new t
Achiev	 ESE: The design of the ALICE ALPIDE chip for the ITS upgrade has been finalised. The design of the ATLAS muon to central trigger interface, to be installed during LS2, has been done and a prototype will be produced in 2017. For CMS, the TCDS (trigger, control and distribution system) has been finalised and the opto-electrical devices for the pixel upgrade delivered. The NA62 straw detector and calorimeter readout electronics have been running smoothly and all the needed GTK stations delivered. The production of the GBT chipset and of the versatile link components has reached the expected pace and deliveries to experiments have been made. Similarly, about 30,000 rad-hard DC-DC converters have been delivered and a new more rad-hard version has been designed for prototyping. The specifications of the lpGBT and VL+ have been finalised and a first prototype is expected in 2017. RD53 has made substantial progress on the design of a common ATLAS/CMS/LCD chip, but the submission will now be made in Spring 2017. The necessary detailed studies of the radiation hardness of the selected 65 nm CMOS technology made great progress and showed some issues after 0.5 GGy. The TTC-PON specifications have been finalised and the development is starting, in view of its use in ALICE after LS2. DT: Production of Phase 1 detector upgrades were launched with CERN teams in the LHC experiments. Production of large-size GEM foils for CMS GE1/1 and the ALICE TPC have been launched, complemented by a strong industrialisation effort in view of future projects. Varied technical support has been provided to Small and Medium sized experiments. The DT carbon-composite laboratory has produced prototype local support structures for CLIC, CMS, LHCb, and ATLAS detector R&D efforts. In terms of infrastructure for the experiments,

12. Scientific support (associates, computing, R&D detectors and technical support) (cont.)

the modernisation of magnet safety systems for the LHC experiments and other experimental magnets at CERN has continued, and consolidated the operational efficiency of numerous gas systems. A leading role has been taken in the design of the ProtoDUNE-SP DAQ system and Detector Control systems for the Neutrino Platform. DT has also pursued R&D on detector technologies for the interest of the overall HEP community: developing radiation-tolerant silicon sensors for the vertex and tracking detectors for the luminosity upgrade of the LHC, novel R&D on precise timing with micromegas, GEM optical readout, ageing of GEM detectors, neutron detectors, and CLIC/ILD detector concepts, micro-engineering and applications such as micro-fluidics cooling and development of MGy dosimetry for the FCC. SFT: New production releases were made of all the software products developed and maintained by the group for use in LHC data processing applications in 2017. The ROOT software toolkit now supports parallelism at various levels and allows physicists to speed up the analysis of Achievements their data sets. A big effort has been made to extend the tools offered for multivariate analysis, including a new deep-learning library that exploits the use of GPUs. A new production service has been introduced, in collaboration with IT, that supports web-based analysis (SWAN) and this is already well used in LHC analyses and in the preparation of tutorials. The performance of algorithms used in Geant4 to model geometry have been improved and models that simulate physics processes continue to be refined, extended and tuned. After more than three years of R&D, the project has produced a prototype capable of transporting particles in complex geometries whilst exploiting microparallelism, SIMD and multithreading. An assessment of progress made has been made in a community meeting organised by the HSF and this has provided essential guidance for future work aimed at delivering adequate performance in the HL-LHC era. The scale of deployment of the two main products of the CernVM ecosystem, the CernVM File System and CernVM Appliance, is such that about 350 million files – belonging to about 50 experiments - are distributed worldwide by CernVM-FS, and more than 10,000 new VMs instantiated every month to serve the needs of the LHC experiments.

Comparison Final 2016 Budget and 2016 Out-Turn (2016 prices)		Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
	Personnel (FTE)	176.6	182.1	137.9	78%	-38.7	76%	-44.2		
Solontific ournert	Personnel (kCHF)	32,120	32,860	24,393	76%	-7,727	74%	-8,467		
Scientific support	Materials (kCHF)	14,190	11,485	7,850	55%	-6,340	68%	-3,635	2,439	
	Total (kCHF)	46,310	44,345	32,242	70%	-14,068	73%	-12,103	2,439	
	Personnel (FTE)									
LHC physics centre at CERN	Personnel (kCHF)									
(LPCC)	Materials (kCHF)	170	155	106	63%	-64	69%	-49		
(LFCC)	Total (kCHF)	170	155	106	63%	-64	69%	-49		
	Personnel (FTE)	6.7	7.3	7.9	118%	1.2	107%	0.5		
Detectors R&D	Personnel (kCHF)	1,540	1,635	1,825	119%	285	112%	190		
Detectors RaD	Materials (kCHF)	485	1,200	671	138%	186	56%	-529	192	
	Total (kCHF)	2,025	2,835	2,497	123%	472	88%	-338	192	
Scientific	Personnel (FTE)	1.3	1.8	2.3	176%	1.0	127%	0.5		
exchanges	Personnel (kCHF)	705	735	381	54%	-324	52%	-354		
(students and	Materials (kCHF)	8,935	8,850	9,053	101%	118	102%	203	0	
associates)	Total (kCHF)	9,640	9,585	9,434	98%	-206	98%	-151	0	

13. Low- and medium-energy accelerators / PS and SPS complexes / Accelerator maintenance and consolidation / Experimental areas consolidation

Goals	The complex will run a full range of physics in the fixed-target experimental areas in 2016. In particular, new physics will be delivered with the full HIE-ISOLDE phase 1 operation at 5.5 Mev per nucleon. This programme will be carried out in parallel with operation for LHC injection. Optimisation of the operational cycles of the machines is a continuous process to ensure the delivery of the maximum beam time to all users. Preparations for the AD target consolidation in LS2 continue. The consolidation of East Hall and North Area will continue for the most urgent items. A number of activities thatdo not require access to the accelerator tunnels are continuing. These include the studies for the replacement of the RF amplifier tubes of the SPS, the project to replace the current n_TOF target, work on the PS and SPS surface buildings, the development of new power converters for the PS main RF system, the replacement of the power converters for the TT2 transfer line magnets, the renovation of the existing SPS compensator BEQ1 to serve as a real spare and the consolidation of electrical substations in the Meyrin West Area, SPS (points 2 and 4).
Achievements	The injector complex ran well in 2016, including HIE-ISOLDE operation at 5.5 MeV per nucleon (more details in factsheet No.30). The availability of the injectors reached the following levels: 97% for Linac2, 95% for the PS-Booster and 90% for the PS. A capacitor failure occurred in the PS Power Supply (POPS) in May 2016, It was repaired and an order was placed for new condensators to be delivered in 2017. For the SPS, a careful operation strategy was put in place to deliver at least 80% of the protons to all experiments and test beam in the North Area despite the occurrence of several issues. The main issue was the vacuum degradation of the SPS internal beam dump (TIDVG), which limited the intensity that could be delivered to the North Area and the LHC. Construction of a new beam dump is under way, and the faulty TIDVG will be replaced by a new one during 2017. The programme to consolidate the RF amplifier tubes (used in the PS and the SPS) has started in order to guarantee safe operation until LS2. New high-voltage power supplies for the PS RF were delivered. Contracts were placed for the procurement of main electrical components for the new converter for TT2. Orbit corrector power supplies for the PS (150 units) will be installed during the EYETS. Regarding infrastructure systems, the consolidation of electrical substations in the Meyrin West Area has been completed, and consolidation activities have progressed in some of the SPS electrical substations (points 3, 4, 5 and 7). The consolidation of the SPS compensator for BEQ1 (static VAR compensator) was re-scheduled for LS2. Work to consolidate the cooling and ventilation infrastructure, including HVAC for the SPS surface buildings, SPS raising-pump systems, and consolidation of cooling and ventilation control systems, has also been carried out successfully. The AD target consolidation programme (ring magnets, RF, etc.) progressed as expected, with an emphasis on the preparation of the activities to be carried out during LS2, in particular the installation of

13. Low- and medium-energy accelerators / PS and SPS complexes / Accelerator maintenance and consolidation / Experimental areas consolidation (cont.)

The CLOUD zone has been equipped with an additional platform giving access to the top of the reaction chamber. During the shutdown the first quadrupole in the T9 beam was replaced.

In general very stable conditions were achieved during North Area operation with proton beams. Initial problems of spikes and 25/30 Hz noise in the focusing quadrupoles chain (QF) disappeared thanks to detailed analysis and repair work (intermittent earth fault). This significantly improved the situation for the users and allowed NA62 reaching nominal beam intensity towards the end of the run.

A consolidation project for the North Area, similar to what is currently done for East Area, will be developed for implementation during LS3. The most urgent consolidation works were however carried out in the North Area: realignment of two beam lines (H2 and H4), the renovation of one crane in the EHN1 experimental hall, the replacement of parts of the chilled water network and electrical infrastructure, also in view of connecting to the EHN1 extension, and the repair of several mobile dumps. The renovation of the power converter for COMPASS (5 kA, 600 V) has started in December 2016.

The new CHARM and IRRAD facilities have been operating routinely (3800h beam time) and with a new record number of users (30 users in total).

The n_TOF target replacement study is progressing: three target designs have been pre-selected. The decision for the final design will be taken in 2017 for installation during LS2.

Comparison Final 2016 Budget and 2016 Out-Turn (2016 prices)		Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud.usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Low- and medium-	Personnel (FTE)	36.7	37.2	39.1	107%	2.4	105%	1.8		
	Personnel (kCHF)	6,835	6,945	7,330	107%	495	106%	385		
energy	Materials (kCHF)	2,540	3,160	2,875	113%	335	91%	-285	339	
accelerators	Total (kCHF)	9,375	10,105	10,205	109%	830	101%	100	339	
	Personnel (FTE)	199.4	196.3	190.7	96%	-8.6	97%	-5.6		
PS and SPS	Personnel (kCHF)	34,120	33,555	33,220	97%	-900	99%	-335		
complexes	Materials (kCHF)	19,890	20,450	18,450	93%	-1,440	90%	-2,000	2,064	
	Total (kCHF)	54,010	54,005	51,670	96%	-2,340	96%	-2,335	2,064	
Accelerator	Personnel (FTE)	173.4	180.1	185.7	107%	12.3	103%	5.5		
maintenance and	Personnel (kCHF)	34,400	35,515	36,856	107%	2,456	104%	1,341		
consolidation	Materials (kCHF)	33,355	39,700	28,140	84%	-5,215	71%	-11,560	7,485	
consolidation	Total (kCHF)	67,755	75,215	64,996	96%	-2,759	86%	-10,219	7,485	
Consolidation of	Personnel (FTE)	8.0	7.7	6.5	82%	-1.4	85%	-1.2		
	Personnel (kCHF)	1,220	1,205	1,202	98%	-18	100%	-3		
experimental	Materials (kCHF)	8,045	4,375	3,438	43%	-4,607	79%	-937	778	
areas	Total (kCHF)	9,265	5,580	4,639	50%	-4,626	83%	-941	778	

Infrastructure, services and centralised expenses

14. Manufacturing facilities (workshops, etc.)

	Projects:
	• Support for the design and construction of prototypes for HL-LHC. Focus on 11 T magnets, SC link, collimators, RF crab cavities, hollow
	electron lenses.
	 LHC, injectors and experiments consolidation, engineering support for the preparation of LS2.
	 HIE-Isolde, support for the fabrication of cryomodules and assembly tools.
	• ELENA, complete the design and the fabrication of the main components. Support for the construction of vacuum chambers, alignment
Goals	and support elements, electron cooler and other machine components. Design and construction of vacuum chambers and supports for
	the transfer lines.
	 Studies and support for the AWAKE collaboration.
	Organisation:
	 Consolidate workshop equipment and conformity to current standards.
	 Support the CERN-wide safety conformity of machine tools.
	Consolidation of group quality policies and procedures.
	Continue the program of selective investment in modern fabrication technologies (ex. additive manufacturing).
	Projects:
	The Mechanical & Materials Engineering group (EN-MME) has contributed to several projects for the HL-LHC. In particular the design office
	supported the engineering computation and design of the 11 T magnets and the work shop delivered dipole and quadrupole components
	and assembly tools. The support work on the collimation design and material characterisation continued during the year. The crab cavity
	forming process were simulated and studied and several prototypes were fabricated. A complete pre design of the Hollow Electron Lenses was carried out.
	LS2 preparation has been one of the main priorities of the design office and work shop, specifically support to equipment groups for the
Achievements	EYETS 2016-2017.
Achievements	Two complete SRF cavities were fabricated for HIE-Isolde, and a fully machined version subcontracted for fabrication in collaboration with
	industry.
	The design and construction of components for ELENA was successfully completed during the year.
	The first aluminium cryostat to be used for the LArTPC (liquid argon time projection chambers) modules of ICARUS was assembled and
	delivered to the neutrino platform team. The second cryostat is almost finished. Steel structures needed for protoDUNE (large-size prototype
	of a single phase LArTPC detector) were subcontracted to industry and delivered.
	Organization:
	In preparation of EYETS 2016-17, the responsibility of stakeholders from the design to the fabrication phase was clarified, which streamlined
	the coordination and transfer of jobs. The design office quality manual was updated.

14. Manufacturing facilities (workshops, etc.) (cont.)

Achievements The metal additive manufacturing (a.k.a. 3D metal printing) equipment has been commissioned and an R&D program for copper and niobium was launched in collaboration with the KT Fund and FCC studies.
--

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (C)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	54.9	56.2	59.9	109%	5.1	107%	3.7		
Personnel (kCHF)	9,185	9,300	9,420	103%	235	101%	120		
Materials (kCHF)	3,880	2,385	2,716	70%	-1,164	114%	331	-6,559	
Total (kCHF)	13,065	11,685	12,137	93%	-928	104%	452	-6,559	

15. General facilities & logistics (site maintenance, transport)

1	Goals	 Ensure a similar level of service to the CERN community as in 2015. Operate and maintain the infrastructure systems, i.e. the electrical distribution network and cooling and ventilation systems, to ensure maximum availability of the accelerator complex and the associated experiments. With this in mind, interventions and maintenance will be scheduled, as much as possible, so as not to perturb the accelerator schedule. The general services department will perform capacity planning to adapt site services to the evolution of the requirements and available resources. In light of this, it will also: Continue the site consolidation based on a risk analysis approach with the highest priority to the safety related actions and the indications of the CERN Masterplan. Improve access to CERN sites. Develop a CERN security policy proposal, with priority to the video surveillance and the access control policies. Pursue the efforts on the Service Management and Support, take actions to conduct the maturity service analysis optimising the services is possible to the service analysis optimising the services is possible.
-	Achievements	by the consideration of dashboards and KPI. In 2016, the overall maintenance work for infrastructure systems has been completed according to the time allowed for intervention without impacting the accelerator schedule, with the global aim to ensure the highest availability of the complex. Cranes, lifts and trucks consolidation programmes were performed as expected. On a more operational side, a total of 16,050 transport and handling operations for a total mass of 113,000 tons were carried out. Out of the total number of heavy transports, about 1,300 concerned radioactive equipment and 679 were used for the transport of dangerous goods. Globally for cooling and ventilation systems, corrective maintenance needs have decreased by about 8% and preventive maintenance by 20% (this is also due to the postponing of some work to the forthcoming EYETS); the exception concerns chillers for which an increase of preventive and corrective maintenance work has taken place because of the higher number of machines of this type installed in recent years and the ageing conditions of old ones. The number of major events and accelerators downtime are similar to 2015. Concerning the electrical transmission and distribution network, more than 740 operations and 2,700 maintenance orders have been carried out to ensure the maximum availability of the accelerator complex and associated experiments. On the side of Site Management and Buildings, the work program was dynamically adapted along 2016, reassigning resources and priorities, by introducing a trimester review of the department budget execution. This practice has been instrumental in the goals achievements.

15. General facilities & logistics (site maintenance, transport) (cont.)

- The Site consolidation plan has been executed on its full 2016 scope according to the resources available.
- The CERN access has been improved by the automatisation of entrance A, the addition of pedestrians turnstiles and plate readers at entrance B. Video surveillance has been reinforced and a deployment plan approved to be executed along 2017.
 - Maturity services analysis have been conducted on the Hostel, cleaning and mobility services introducing KPIs and dashboards. Daily and weekly monitoring of logistics services have been put in place to react quickly to any unexpected high load. Resources have been re-distributed during seasonal peaks to avoid the creation of a backlog which could potentially perturb the accelerator schedule.

•	nal 2016 Budget urn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
	Personnel (FTE)	58.7	59.9	50.6	86%	-8.1	84%	-9.3		
Site facility	Personnel (kCHF)	10,940	10,670	8,431	77%	-2,509	79%	-2,239		
management	Materials (kCHF)	20,145	20,005	17,448	87%	-2,697	87%	-2,557	1,904	
	Total (kCHF)	31,085	30,675	25,879	83%	-5,206	84%	-4,796	1,904	
	Personnel (FTE)	130.0	132.3	139.0	107%	9.0	105%	6.8		
Technical	Personnel (kCHF)	22,660	22,935	23,952	106%	1,292	104%	1,017		
infrastructure	Materials (kCHF)	13,520	14,905	17,931	133%	4,411	120%	3,026	-1,226	
	Total (kCHF)	36,180	37,840	41,883	116%	5,703	111%	4,043	-1,226	
	Personnel (FTE)	15.3	13.5	13.6	89%	-1.7	101%	0.1		
Logistics	Personnel (kCHF)	2,480	2,245	2,207	89%	-273	98%	-38		
Logistics	Materials (kCHF)	720	1,155	1,018	141%	298	88%	-137	612	
	Total (kCHF)	3,200	3,400	3,225	101%	25	95%	-175	612	
	Personnel (FTE)									
Stores activity	Personnel (kCHF)									
Sidies activity	Materials (kCHF)	375	375	394	105%	19	105%	19	255	
	Total (kCHF)	375	375	394	105%	19	105%	19	255	
	Personnel (FTE)	1.5	1.0	1.2	79%	-0.3	118%	0.2		
Housing fund	Personnel (kCHF)	220	210	344	156%	124	164%	134		
nousing lunu	Materials (kCHF)	4,100	3,940	2,610	64%	-1,490	66%	-1,330	255	
	Total (kCHF)	4,320	4,150	2,955	68%	-1,365	71%	-1,195	255	

16. Informatics

Goals	 Ensure adequate level of availability of the Informatics services including data loss protection (backups) against accidental errors or human mistakes for its user base, as well as perform capacity planning to anticipate the needs. Ensure prompt corrective actions in case of service failures. Protect and educate against the risks of computer security vulnerabilities. Continue the design & implementation of a second networking hub aiming at improving business continuity. Start preparing the 20-year-old CERN structured cabling replacement. Conclude the tendering process of the SCOAP3 next cycle starting in 2016. Enlarge the membership of the consortium. Implementation of the Learning Management System (LMS). Pursue the introduction of the digital records management system.
	 The services were generally delivered to users' satisfaction, capacity increased as requested and backup performed. Computer Security awareness campaigns have been organised, in particular raising the attention to risks at the highest levels of the organisation. Additional effort was started in the framework of the new Computer Security hardening project. Two serious cases of software licence violations have been contained without damage to the organisation.
	 The 2nd networking hub project has made good progress and is scheduled to be completed in 2017. The Wi-Fi deployment project has started to rejuvenate the CERN wireless infrastructure and should reduce the scope of the renewal of the structured cabling infrastructure in the coming years.
Achieveme	 SCOAP3: The SCOAP3 collaboration grew to about 3,000 partners from 47 countries, as well as two Intergovernmental Organizations (JINR, IAEA). The first three-year phase of its operation was concluded in 2016. Through this phase, 13,600 high-energy physics articles have been published open access over 10 high-quality journals from learned societies and commercial publishers. About 20'000 authors in 100 countries benefited from this infrastructure at no direct cost. CERN ensured an efficient and effective operations including
	management of incoming and outgoing funds, informatics infrastructures, relations with participating publishers, support to the international governance of SCOAP3. Following a consensus across the participating countries, and successful negotiations with publishers, the initiative was extended for three more years: 2017 to 2019. During 2016, MoUs across partners, and contracts with publishers, were correspondingly amended.
	 Implementation of the Learning Management System (LMS). Implementation of the Learning Management System for Technical, Language, Management and Communications training is well underway. Restructuring within the main stakeholders in HR department introduced some delay in the project. Initially Safety was expected to be included within the development of the LMS, however HSE department needed more time to define their internal
	 processes. Implementation of the Safety training will take place in 2017 (within the same tool as the other training programs). Pursue the introduction of the digital records management system.

16. Informatics (cont.)

The introduction of the digital records management system is well underway. Front line services such as Records Office, Registration • Service, User Office, Personnel Accounting, and Teams and Collaboration all now rely on the new digital records management system. Achievements Over 200,000 documents have been digitised and added to the system. All new personnel have a fully digital personnel file.

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	180.7	193.2	195.3	108%	14.6	101%	2.1		
Personnel (kCHF)	32,100	33,220	34,568	108%	2,468	104%	1,348		
Materials (kCHF)	25,110	24,655	22,741	91%	-2,369	92%	-1,914	3,677	
Total (kCHF)	57,210	57,875	57,309	100%	99	99%	-566	3,677	

17. Safety, health and environment

	Occupational Health and Safety:									
	Limit number of incidents (improved awareness/training/prevention, implement lessons learned from LS1 in view of LS2).									
	 Improve hazard control (work procedures, choice of work methods, technological choice). 									
	 Participation in CERN (existing & future) projects at all levels for integration of Safety as early as possible. 									
	 Safety Training: new editions of major courses (updates, improved didactic), training centre operation and extension/consolidation for LS2. 									
	Occupational Medicine & Emergency preparedness:									
	• Develop the partnership with the Geneva health system (HUG) enhancing the CERN emergency services (formation and coordination procedures).									
Goals	• Efficiency optimisation of the safety and security call/control centres. Study integration at CCC (Cern Control Centre).									
	Radiation protection:									
	• Keep doses to persons As Low As Reasonably Achievable (ALARA) using consequent work planning and prediction software.									
	Radioactive Waste Treatment Centre: ramp-up waste treatment capacity, and elimination, in view of LS2.									
	Further extension of RAMSES coverage along with CERN consolidation work of injector chain.									
	Research and development for the next generation of radiation monitoring equipment.									
	Environmental Protection and Environmental Panorama:									
	Environmental impact studies for upgrade of facilities and new projects.									
	 Further extension of monitoring installations, including hydrocarbon detection for water releases. 									
	Extension of environmental laboratory allowing for physical separation of 'conventional' and radioactive samples.									
	Occupational Health and Safety:									
	The DSOC has established a working group to set-up a better framework for accident and near-miss reporting.									
	• Important improvement mechanical safety of machine-tools, 2,170 inspections carried out, 900 machine-tool are conform out of the									
	1,200 recorded in the database (none of the non-conform ones are at high risk and therefore can be used with compensatory									
	measures)									
	 31 projects had been completed, 27 new CERN projects added for a total of ~120 projects provided with tailored Safety prescriptions and best Safety practices. Among major achievements: Safety clearances for NA61 and AWAKE; start of the SHiP (Physics Beyond 									
	colliders) and SPS Fire consolidation projects; important contribution for the underground layout of HILLHC									
Achievemer	• Safety training is now part of the HSE/DI group, under the direct responsivity of the new Deputy HSE Department Head. A revision of									
	the courses and the facilities needed for LS2 is in progress.									
	Occupational Medicine & Emergency preparedness:									
	The partnership is well implemented between HUG and CERN with more than 200 medical emergencies/year and SMUR intervention									
	in 31 % of cases. The CERN ambulance team is also benefiting from the joint training program which has been implemented with the									
	HUG									
	• The integration of the SCR into the CCC (Cern Control Centre). has been studied and the decision was that this is not the highest priority									
	for the CERN emergency services at the moment. However, a joint working group has been established for the joint handling of calls									
	related to medical emergencies with HUG.									

17. Safety, health and environment (cont.)

	 In addition to the consolidation of the CERN environmental monitoring network (3 additional monitoring stations), water release points in surrounding rivers of Prévessin, Meyrin and LHC sites have been equipped with hydrocarbon detectors (13 in total). Early detection of hydrocarbon pollutions and quick intervention of the Fire and Rescue service are ensured. The establishment of the CERN Environmental Protection Steering board was agreed at the end of 2016. This board will be set-up in
	generation electronics for ultra-low current measurements had been designed in collaboration with EPFL. The studies for a detector system able to measure radioactivity below the new Swiss exemption limits have identified very promising technical solutions. Environmental Protection and Environmental Panorama:
	 (East Area) and SPS (BA80, AWAKE). RAMSES had been installed for the new projects MEDICIS, LIGHT, Test Gun, AD Gbar. The installation of the GROAC system, developed to guarantee the reliability of radiation monitoring still covered by ARCON will be completed during EYETS 2016/17. The project to develop the future RAMSES monitor "CROME" met all milestones with ten prototypes produced for testing. The next
Achievements	 Switzerland. For the first time in decades CERN disposed of considerably more waste than it produced. CERN's radiation monitoring system had been further consolidated by installing the RAMSES radiation monitoring system at the PS
	 International doses to OETRY's radiation workers continued to be low. The majority of the about 5,000 memories received an individual dose of less than 1 mSv in the period between 1 January 2016 and 30 November 2016. Seven workers received an individual dose exceeding 1 mSv, the highest individual dose being 1.9 mSv (status 30 November 2016). The collective dose to all CERN's radiation workers had been 208 mSv. The ramping up of the Radioactive Waste Treatment Centre had been finished in 2016. About 1200 m3 of low level radioactive waste had been eliminated, the major part being sent to the final repository in France, the rest cleared from regulatory control and sent to
	 A tripartite collaboration agreement for emergency interventions on the CERN sites has been signed between the CERN and the Host State Fire Brigades. This agreement paves the way for a closer collaboration between the 3 services in the face of serious incidents affecting CERN Radiation protection: The individual doses to CERN's radiation workers continued to be low. The majority of the about 9,000 monitored workers received an

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	154.7	169.3	168.1	109%	13.4	99%	-1.2		
Personnel (kCHF)	23,865	26,380	27,552	115%	3,687	104%	1,172		
Materials (kCHF)	16,085	17,030	12,491	78%	-3,594	73%	-4,539	1,935	
Total (kCHF)	39,950	43,410	40,043	100%	93	92%	-3,367	1,935	

18. Administration

	Finances & Accounting:
	Continue to actively manage the treasury at CERN to limit the use of short term loans and avoid being charged negative interest.
	• Finalise the revised accounting policies concerning Property, Plant and Equipment and Intangible Assets (recommendations from
	External Auditors) for the 2015 Financial Statements.
	Continue to adapt processes and activities according to best practices.
	Maintain a focus on continuous improvement of automation of accounting processes.
	Quarterly close of the books.
	Pursue the automatisation of the accounts payable process.
	Continue to work with HR on the project aiming to suppress multiple filing in the area of Payroll.
	Assure the T-account structure for the upgrades of the different LHC experiments.
	• Strengthen AML (Anti Money Laundering) / CDD (Customer Due Diligence) compliance of Visiting Research Team Accounts.
	Procurement:
	Further improve the industrial return coefficient of poorly balanced Member States.
	Streamline and automate processes to optimise end-to-end supply chain based on:
	 Definition, follow-up and update of the procurement policy, strategy and process resulting from experience gained,
Goals	 Best practice procurement principles and legal developments, Monitoring of key performance indicators,
	 Monitoring of key performance indicators, Benchmarking of procurement processes with similar organisations (e.g. EIROforum members),
	 Development and implementation of e-learning modules for internal and external stakeholders providing training and information about
	the procurement service and the relevant procedures.
	Human Resources:
	Fostering a professional environment that confirms CERN as a top-ranking employer, able to adapt its HR strategies and processes to
	changing needs, while attracting, retaining, motivating and developing a competent and diverse workforce, by:
	Reviewing the Organization's Staff Contract Policy.
	• Conducting the Five-Yearly Review of financial and social conditions, with specific emphasis on the CERN career structure and diversity-
	related matters.
	Developing CERN-wide Benchmark Jobs.
	Rolling out the Diversity and Learning & Development Policies.
	Conducting projects related to Leadership Culture and Capacity Planning.
	• Furthering the sourcing, recruitment and development of technical fellows via the Technicians Training Experience (TTE) programme.
	 Pursuing the transformation from a traditional HR Department into a service and delivery partnership.
	Continuing to implement process simplification and effectiveness gains, for example by implementing a repository on the E. Personnel
	file aiming to suppress the flow of paper documents.

18. Administration (cont.)

	Directorate:
Goals	 Continue working on the enlargement process to obtain additional Associate Members and agreements with non-Member States aiming
Could	for additional revenues (in collaboration with the IR- Sector).
	Implementation of the medium- and long-term strategy and financial plan including scrutinising the various activities.
	Finance and Accounting:
	Credit facility to finance HL-LHC (up to 250 MCHF).
	PPE (Property, Plant and Equipment) and Intangible Assets in production +1.1 BCHF in balance sheet.
	Business computing:
	 New Payroll Software, data warehouse & start-up of sector wide reporting.
	 New dashboards, e.g. monthly financial indicators for project follow-up.
	 Clean opinion for ALL audits (CERN and third party funding - EU projects).
	 Review of insurance portfolio and financial harmonisation of CERN's foundations.
	• Concluding the ongoing Five-Yearly Review of financial and social conditions (with support from HR Department and sector
	representatives).
	Streamlining the planning and controlling processes.
	Procurement:
	• Further efforts to improve the industrial return to the Member States were made and during 2016 an internal working group was set up
	to review the Procurement Rules with the aim to:
Achievements	 Improve the distribution of industrial return to the CERN Member States; Introduce abjective and transportant procedures applying CERN to reject hide that are found to be "abpermally low".
	 Introduce objective and transparent procedures enabling CERN to reject bids that are found to be "abnormally low".
	 Several initiatives and actions were implemented to increase efficiency in the overall end-to-end supply chain, such as: A complete revision of the procurement codes;
	 The e-procurement project is on-going and will be finalised in 2017;
	 The benchmarking activities of the EIROforum Working Group on Procurement continued. A meeting was held at ESTEC in June
	2016, allowing the various organizations to learn best practices in common areas of interest.
	• As a result of the above and previous process improvements, the Procurement service was awarded the 2016 EIPM, Peter Kraljic award
	for Innovation and Process Excellence;
	• The Tendering for two EU-financed Pre-Commercial Procurement projects was successfully completed and the contracts for phase 1
	have been placed;
	 A record number of market surveys and invitations to tenders was successfully issued.
	Human Resources:
	Implementation of the Five-Yearly Review in 2 stages:
	 1 Jan: modernised diversity-related conditions: extended recognition of registered partnerships, improved conditions offered during
	parental leave, support to dual-career couples, enhancement of the Saved Leave Scheme and Extension of the teleworking scheme.
	 1 Sept: concerned a rationalised career structure, including a new salary grid and the delivery of the new performance appraisal.

18. Administration (cont.)

		٠	Called MERIT (Merit Evaluation and Recognition Integrated Toolkit); mapping of all staff members to the completed design of Benchmark	
A a bio yo manta		Jobs.		
	Achievements	٠	Approval of new CHIS rules.	
		٠	Management proposal to Council for additional LD positions as optimisation of the P&M balance without increase of budget or peak	
			deficit.	

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	206.8	199.6	212.6	103%	5.8	107%	13.1		
Personnel (kCHF)	38,755	37,625	36,363	94%	-2,392	97%	-1,262		
Materials (kCHF)	14,660	17,500	8,998	61%	-5,662	51%	-8,502	354	
Total (kCHF)	53,415	55,125	45,362	85%	-8,053	82%	-9,763	354	

19. International relations

Goals Goals I on the with To	takeholder relations office (SRC) was constituted in 2013, bringing together the leaders of CERN's activity in communication, education, emaintonal relations, and relations with international organisations. This contributes to coordinating and streamlining CERN's relations in all major stakeholder groups. The SRO works as follows. Increase awareness of and foster support for CERN and its missions, and to promote the interaction of science with society in Europe. promote the public understanding of particle physics, cosmology, and related technologies through activities such as: Teacher Programmes: to update the knowledge and to enthuse school teachers (about 1,000 teachers a year) so that they become ambassadors for CERN by motivating their students to continue their scientific studies at secondary level. School students: to perform experiments on modern physics and CERN technologies in a newly created S'Cool LAB. The S'Cool LAB has been inaugurated in summer 2014. Visits and exhibitions: to inform the outside world about the science that is done at CERN by providing the opportunity to visit the Laboratory, meet scientists, and visit experimental facilities, for more than 100,000 visitors per year. The permanent exhibition wisit points (SMB, the LHC Control Centre, Computing Centre and the refurbished Synchrocycloron) have been completed and have been inaugurated in 2014 as state-of-the-art exhibition venues. The travelling exhibitions continue to tour Europe (2014: Peland, Greece, Spain) to inform citizens in these countries about CERN research and reinforce their interest in participating in CERN. A new "interactive LHC tunnel' exhibit has been shown in 8 different venues of CERN, three new traveling exhibitions and three compact versions of the "LHC interactive tunnel' have travelled to locations in more than 10 Member States. Events anout the announcements of important physics results, including press conference, media visits, video and photo coverage, and participation at major physics conferences with seq
--	---

19. International relations (cont.)

Achievements	Member State representatives. A four-pronged strategy for geographical enlargement was presented to the CERN Council (March 2016). Romania became the 22 nd Member State (July 2016), Cyprus joined as an Associate Member State in the pre-stage to Membership (April 2016), and Ukraine became an Associate Member State (October 2016). Agreements were signed with Slovenia for Associate Membership in the pre-stage to Membership (December 2016) and with India for Associate Membership (November 2016). Lithuania submitted an application for Associate Membership (March 2016). International Cooperation Agreements (ICAs) with Latvia, Qatar and Sri Lanka were approved, and certain existing ICAs were broadened in scope. CERN's collaboration with other international organisations was further developed with a new Cooperation Agreement with the Inter-Parliamentary Union (IPU). Relations with the Host States were enhanced, notably with the Agreement between CERN, France and Switzerland relating to Mutual Assistance between their Services for Emergency Rescue Operations, in particular on the CERN site. CERN hosted 142 Protocol Visits and Events (12.7% increase on 2015), including visits by five Heads of State or Government. In order to expand the networks of support, a design study for a CERN Alumni Programme was completed, with formal launch expected in June 2017. Outreach was significantly strengthened, with a record 119,997 participants in organised visits (12% increase on 2015), distributed over 5,048 visits with 4.219 groups, as well as an estimated 70,000 visitors to the open exhibitions. 65 events were organised at the Globe of science and Innovation (re-opened May 2016 after refurbisment), with some 7,500 participants. Several CERN exhibitions were enhanced significantly, and the new Microcosm Exhibition was opened. The travelling exhibitions reached some 100,000 visitors in C2ech Republic, Lithuania, Portugal, Georgia, France, Austria and Italy. 35 teacher programmes brought together 953 participants, and CERN welcomed hi
	articles, editorial content showcased the people behind the science. 131 video clips were published, and 330 photo sessions organised, among other efforts to integrate the audio-visual dimension more closely in the broader communications efforts.
	Interactions. The 4 th edition of TEDxCERN reached a large global audience, including through 75 viewing parties worldwide. Fundraising activities for the CERN&Society Foundation enabled the engagement in STEM projects of over 1,500 high school students, training of 60 teachers, training of 30 librarians and IT specialists, support for 14 summer students, over 100 hours of Open Software
	development by software engineers, and residency for four artists at CERN under the increasingly successful and respected Arts at CERN Programme.

19. International relations (cont.)

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	46.0	63.2	63.8	139%	17.8	101%	0.7		
Personnel (kCHF)	7,825	11,085	11,731	150%	3,906	106%	646		
Materials (kCHF)	2,910	6,625	5,374	185%	2,464	81%	-1,251	560	
Total (kCHF)	10,735	17,710	17,105	159%	6,370	97%	-605	560	

20. Infrastructure consolidation, buildings and renovation

Goals	Execution of the annual consolidation plan covering primarily safety, façade, roof, toilet block, HVAC, Electricity interventions and technical galleries. Execution of the civil engineering works on Building 107. Execution of building 311 for the magnetic measurements. Execution of
	building 771 for the polymer lab. Globe overall consolidation.
	The annual consolidation programme was carried out to its full extent. The civil engineering work in the Building 107 progressed according
Achievements	to plan within the new organisation. All work packages have been launched. For the building 311, the engineering work and the tendering process have been completed, the works have started and they are proceeding according to the schedule. For the building 711, the civil engineering works were completed and the HVAC works were delayed due to an issue with the supplier. A new schedule has been setup to
	complete the building in 2017. For the globe consolidation, the works were organised and completed as planned and within the budget.

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	18.7	16.8	20.3	109%	1.7	121%	3.6		
Personnel (kCHF)	2,930	2,585	3,084	105%	154	119%	499		
Materials (kCHF)	28,120	36,950	29,227	104%	1,107	79%	-7,723	9,673	
Total (kCHF)	31,050	39,535	32,311	104%	1,261	82%	-7,224	9,673	

21. Centralised expenses

Centralised personnel expenses	This heading is dominated by the CERN share of the health insurance scheme for the pensioners, the costs for personnel arrivals and departures and unemployment benefits. These costs can be estimated but there is no specific goal associated. The amount paid for unemployment benefits has decreased due to a decreasing number of LD departures since 2015 (new staff policy), but is expected to increase again as from 2018 (end of 8 years LD contracts).
Internal taxation	The internal taxation appears in centralised expenses and offsets the equivalent heading in revenues. The personnel costs in all other headings are thus without internal taxation.
Personnel internal mobility	This heading aims to enhance internal mobility between departments by helping to pay salary differences between an experienced staff member and a new recruit.
Personnel on detachment	CERN personnel that is on a detachment for collaboration or other institute. The full personnel cost of the detachment is covered by the third party and is accounted as revenues for CERN.
Personnel paid but not available	The amount of staff members exercising their saved leave or compensation leave usually at the end of their career. The heading is funded by the provision for "amortisation of staff benefits accruals". The FTEs under this heading (20.7) are moved from other activities to this heading during the year, when the staff concerned is exercising their right to this leave (which is not known in advance and therefore still under the original activity).
Personnel paid from team accounts	This heading concerns staff and fellows working funded by third parties as shown also under revenues. The difference between budgeted FTEs and the FTEs in the Out-Turn, is due to additional team-funded fellows (offset by revenues).
Budget amortisation of staff benefits accruals	Corresponds to the funding over 10 years of saved leave and shift work compensation of employed members of personnel as recognised for the first time in the balance sheet when implementing IPSAS (should end in 2018).
Energy and water	This heading is dominated by the electricity supply. It further includes heating gas and water costs. The savings with respect to Revised 2016 Budget result mainly from a lower electricity consumption in SPS and a relatively warm winter with the reduced use of heating oil and gas.
Insurances, postal	Personnel and goods insurances as well as the postal charges.
charges, miscellaneous	An in-depth review and several improvements have been implemented in 2016. The objective was to reach an optimal coverage of our risks with the most competitive premiums.
Interest, bank and	This heading includes the interest on the BNP Paribas Fortis loan, bank charges and financial expenses (i.e. exchange loss). CERN has no short-term loans outstanding as of 31 December 2016.
financial expenses	Difference in other financial expenses is due to an exchange loss of 7.6 MCHF. It was partially offset by foreign exchange and fair value gains of 5.6 MCHF. The net loss recorded in 2016 amounts to 2.0 MCHF. This was not planned in the budget.
In-kind	Relating to the fair value of CERN's right having been granted some interest free loans (also under revenues).

21. Centralised expenses (cont.)

Comparison Finant and 2016 Out-Tu		Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud.usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Centralised	Personnel (FTE)									
personnel	Personnel (kCHF)	35,705	36,335	36,079	101%	374	99%	-256		
expenses	Materials (kCHF)									
expenses	Total (kCHF)	35,705	36,335	36,079	101%	374	99%	-256		
	Personnel (FTE)									
Internal taxation	Personnel (kCHF)	28,545	30,045	31,451	110%	2,906	105%	1,406		
	Materials (kCHF)									
	Total (kCHF)	28,545	30,045	31,451	110%	2,906	105%	1,406		
	Personnel (FTE)									
Internal mobility	Personnel (kCHF)	820	500			-820		-500		
internar mobility	Materials (kCHF)									
	Total (kCHF)	820	500			-820		-500		
	Personnel (FTE)	3.3	3.5	3.1	95%	-0.2	88%	-0.4		
Personnel on	Personnel (kCHF)	925	970	801	87%	-124	83%	-169		
detachment	Materials (kCHF)			53		53		53		
	Total (kCHF)	925	970	855	92%	-70	88%	-115		
	Personnel (FTE)			20.7		20.7		20.7		
Personnel paid	Personnel (kCHF)			2,482		2,482		2,482		
but not available	Materials (kCHF)									
	Total (kCHF)			2,482		2,482		2,482		
Personnel paid	Personnel (FTE)	81.2	91.7	84.1	104%	2.9	92%	-7.6		
from team	Personnel (kCHF)	11,695	12,940	11,783	101%	88	91%	-1,157		
accounts	Materials (kCHF)									
	Total (kCHF)	11,695	12,940	11,783	101%	88	91%	-1,157		
Budget	Personnel (FTE)									
amortisation of	Personnel (kCHF)	17,330	17,330	17,328	100%	-2	100%	-2		
staff benefits	Materials (kCHF)									
accruals	Total (kCHF)	17,330	17,330	17,328	100%	-2	100%	-2		
	Personnel (FTE)									
Energy and water	Personnel (kCHF)									
	Materials (kCHF)	76,040	63,985	60,405	79%	-15,635	94%	-3,580	24	
	Total (kCHF)	76,040	63,985	60,405	79%	-15,635	94%	-3,580	24	
Insurance, postal	Personnel (FTE)									
charges,	Personnel (kCHF)									
miscellaneous	Materials (kCHF)	6,240	6,240	5,028	81%	-1,212	81%	-1,212	0	
	Total (kCHF)	6,240	6,240	5,028	81%	-1,212	81%	-1,212	0	
Interest, bank and financial expenses	Personnel (FTE)									
		10,940	10,940	17,700	162%	6,760	162%	6,760	0	
	Total (kCHF)	10,940	10,940	17,700	162%	6,760	162%	6,760	0	
	Personnel (FTE)									
In-kind	Personnel (kCHF)									
	Materials (kCHF)	4,900	2,045	1,863	38%	-3,037	91%	-182		
	Total (kCHF)	4,900	2,045	1,863	38%	-3,037	91%	-182		

Projects

LHC upgrades

22. LINAC4

Goals Complete commissioning with beam up to the final energy of 160 MeV, start a run to improve reliability, and test at 160 MeV	the PS Booster
H- injection equipment.	
After completing installation, the accelerator has been commissioned with beam in two steps, up to 107 MeV energy in Ju	ly and up to the
Achievements final 160 MeV in October. In the last part of the year, Linac4 was delivering beam to the PS Booster H- injection equipment	under test in the
Linac4 area. Preparation for a long run to improve reliability has started; the year-long reliability run will take place in 2017.	
The Linac4 facility was handed over to operation at the end of 2016.	

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (C)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	17.0	18.3	19.6	115%	2.6	107%	1.2		
Personnel (kCHF)	3,095	3,315	3,145	102%	50	95%	-170		
Materials (kCHF)	1,770	2,270	2,172	123%	402	96%	-98	201	
Total (kCHF)	4,865	5,585	5,318	109%	453	95%	-267	201	

23. LHC injectors upgrade

Achievements	 feasibility and lon beams: T 2: lons (CERM machine study beam current to its unprecet to 7 times lar The second Cost includes the scop project were, and Increase the 	d advantages he ion beam p I-ACC-2016-00 dies. Linac3 cd ts to LEIR up edented perfo ger than antic and Schedule e description, ong others: follow up on E	of such syste parameter tab 41) was relea ould profit fro to 50% highe rmance. All the ipated. Review of bo the schedule EVM to closel	em were de le was asse ased in Api m the enla r than in pi ne efforts m oth LIU and e and the c y monitor t	emonstrated. essed at the be- ril 2016. The ic rged aperture a revious years. / nade along the d HL-LHC proje cost, was closel he cost and scl	ginning o on chain i at the ent A large nu ion inject octs took p ly scrutini hedule va n reaching	f 2016 and t restarted ea rance of the umber of ma ion chain we blace in Octe ised. Import	the LIU Technical Design Report (TDR), Volume arly in 2016, which gave more time to conduct e solenoid and source improvements, providing achine studies were carried out in LEIR leading ere rewarded in 2016 with a peak luminosity up ober 2016. The baseline of both projects, which cant recommendations of the review for the LIU eam parameters in the PS and SPS.			
Achievements	the injectors with The design, proc equipment neede power convertor Stop (EYETS), w The Half Sector their operation su serving the purpor LS2. 2016 beam studi • Proton beam the SPS loss the losses at feasibility and • Ion beams: T 2: Ions (CERM machine stud beam curren to its unprece to 7 times lar The second Cost includes the scop	higher intens urement and o ed for the Lina building was as prepared. Test (HST) se uccessfully be ose to reduce es (simulation SPS injection d advantages he ion beam p N-ACC-2016-00 dies. Linac3 co ts to LEIR up edented perfo ger than antic and Schedule e description,	ity LHC-type construction of ac4-PSB 160 completed ar et-up and the gan in Octobe technical and as and measu Machine Deve of such syste of such syste oarameter tab 41) was releat ould profit fro to 50% highe rmance. All the ipated. a Review of bo	proton and of equipment MeV conn and the PSE Stripping I er 2016. The planning rements) he elopment state a performation e of high b ern were de le was assed ased in Ape m the enla or than in plane efforts m	Lion beams in a nt for the upgra ection, beam ir decabling car Foil Test Stand he first 160 MeN risks for installa have been instru- tudies were dev ance risks were andwidth trans- emonstrated. essed at the be ril 2016. The ic rged aperture a revious years. / hade along the	all their va ded mach nstrument mpaign, tr were ins / H ⁻ bean ation and umental tr voted to th e identifier verse fee ginning of on chain i at the ent A large nu ion inject	ariants. hines contin tation, as w o be carried stalled durin n was sent t l commissio o define futu he PSB-PS d in the ach edback syste f 2016 and t restarted ea rance of the umber of ma ion chain we blace in Octo	nued throughout 2016. Typical examples are: all rell as the PS and LEIR dumps. The PSB main d out during the Extended Year End Technical rg summer 2016 in the Linac4 transfer line and to the HST on 26 th of October 2016. The HST is oning of the future PSB injection chicane during ure beam parameters: and the PS-SPS beam transfers combined with ievable PS intensity, as well as in the control of em was installed and operated in the SPS; the the LIU Technical Design Report (TDR), Volume arly in 2016, which gave more time to conduct e solenoid and source improvements, providing achine studies were carried out in LEIR leading ere rewarded in 2016 with a peak luminosity up ober 2016. The baseline of both projects, which			
Goals	 Progress on equipment design, procurement and construction towards the goal of completing all LIU installations during LS2 (e.g. elements for Linac3 10 Hz operation, new LEIR external dump, new POPS-B main building, PS-Booster injection equipment and instrumentation, new PS injection elements, new SPS ion injection elements, SPS-LHC transfer line collimators, BAF3 infrastructure). Complete set up and execution of the Half Sector Test (HST) with the main goal to test the new H- injection into the PS-Booster and the relative instrumentation, and thereby mitigate the risks of a direct connection. Carry on beam studies and optimisation using the additional means implemented during LS1 and successive YETS (Year End Technical Stop) (e.g. PS Ionisation Profile Monitor, slotline kicker for SPS High Bandwidth Feedback System) and gain further experience on running the injectors with higher intensity LHC-type proton and ion beams in all their variants. 										

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	112.4	114.9	118.2	105%	5.8	103%	3.2		
Personnel (kCHF)	18,380	18,480	19,240	105%	860	104%	760		
Materials (kCHF)	27,115	17,940	17,819	66%	-9,296	99%	-121	8,120	
Total (kCHF)	45,495	36,420	37,059	81%	-8,436	102%	639	8,120	

24. HL-LHC construction

Goals	 Manufacture and qualification of the superconducting cable for the first full length prototype. Construction of the first prototype Nb₃Sn coil (7.5 m long) by CERN and of the first full cold mass by the USA (4.5 m long). Assembly of the first type of cryo-module of Crab Cavity and design of the second type. Beam test of the first low impedance collimator in MoGr. Test of first complete cold powering system. Validation of the new beam screen design.
	 Validation of the new beam screen design. Start manufacturing of the prototype of Long Range Beam-Beam compensating wire.
Achievements	 The manufacture and qualification of the Nb₃Sn superconducting cable for the first long prototype of Inner Triplet (IT) Quadrupole has started: 2 unit length have been manufactured and the remaining unit length (2 plus spares) will be finished in March 2017. A 3 months delay in the production of the strand occurred, with no impact on the schedule of the magnet manufacturing. The Nb3Sn superconducting cable for the 11 T long prototype has been entirely manufactured and fully qualified (5 unit length) well in advance with respect to the needs for winding: The first 7.5 m long coil for the Q2A/B IT quadrupole has been manufactured at CERN using a dummy Rutherford cable. The whole coil fabrication process was successfully validated. The first full length 'single coil' (4.5 m) for Q1/Q3 IT quadrupole has been assembled in Lawrence Berkeley National Laboratory (LBNL-USA) by LARP collaboration. Various mechanical checks and electrical tests are under way. Another achievement in 2016 is the construction by Fermi National Accelerator Laboratory (FNAL-USA) of a long coil, which was successfully tested at BNL. A 2m long model of IT quadrupole was also assembled in 2016; The two first Crab Cavities have been built: one RF Dipole type (RFD type) was done in USA and one Double Quarter Wave type (DQW type) was completed at CERN. The DQW type was not initially foreseen to be built by CERN; this decision was taken to mitigate a shortfall of one US-LARP producer. This event implies a six months delay in the assembly of the cryo-module, which will be finished into the schedule for SPS crab cavity test. Since then, the schedule has not suffered further delays; The test of the first full length, double jaw collimator in Molybdenum Graphite (MoGr) has been completed in the HiRadMat facility (CERN), as well as in BNL facilities. The low impedance material (MoGr) has been successfully validated in 2016 for the fluence and impact energy density foreseen in the HL-LHC era; All sub-elements
	 does not affect the final delivery date of the cold powering system; The first short prototype (1m long) of beam screen, shielded with heavy tungsten, has been manufactured and validated. Relevant measurements of the aperture and mechanical tolerances were carried out. The evaluation of the sensitivity to quench, which emerged from some risk assessment done in 2016, will be carried out in 2017;

24. HL-LHC construction (cont.)

• The first two long-range beam-beam compensating wire systems (a wire embedded in a functional collimator) have been completed in 2016 and installed during the Extended Year End Technical stop (EYETS 2016-17). The remaining two systems are under assembly, with some advance with respect to the initial planning.

Achievements

The second Cost and Schedule Review of both LIU and HL-LHC projects took place in October 2016. The baseline of both projects, which includes the scope description, the schedule and the cost, was closely scrutinised. In particular for HL-LHC, the increase in cost estimate of the civil engineering works led the project management team to carry out a re-baselining exercise during summer 2016. The impact in terms of cost and schedule for each HL-LHC work package was debated, the Earned Value Management system was presented and the "Clean Bill of Health" delivered at the 1st C&S review has been confirmed.

The review pointed out, as one of the first priorities for the project, the need for timely preparation and execution of the tender for Infrastructure contracts and regular oversight by the LIU/HL-LHC Executive Committee. The need for an "event risk" to the cost uncertainty calculation was also identified until the commitment of external contributors is solidified.

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (C)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	144.3	145.4	164.5	114%	20.2	113%	19.1		
Personnel (kCHF)	25,015	25,045	27,690	111%	2,675	111%	2,645		
Materials (kCHF)	37,855	22,250	28,421	75%	-9,434	128%	6,171	13,066	
Total (kCHF)	62,870	47,295	56,111	89%	-6,759	119%	8,816	13,066	

25. LHC detectors upgrade (Phase 1) and consolidation / HL-LHC detectors, including R&D (Phase 2)

 ATLAS: Progress with the Phase 1 upgrade programme: completion of MM module-0, purchase of PCB modules for MM production, purchase 01 LAr libers, development of muCTP prototypes. CMS: Prepare for the insertion of the Pixel Phase 1 during YETS 2016/2017. Finalise the GEM Phase 2 demonstrator and install during YETS 2016/2017. Consolidate services for these sub-detectors. ALICE: The main objectives for the ITS upgrade in 2016 are the completion of all R&D activities and start of production. In particular the pixel chip production will start mid-2016 and the module production in the last timester of 2016. The O2 project will continue its R&D activities that will be completed in 2017. In parallel to the involvement in ALICE operation, the TC team will work on the preparations for the LS2 paned around 2018, following the TDRs that have all now been endorsed by the LHCC and subsequently approved. TOTEM: development of time detector sensors; installation of precision clock distribution in combination with the lime detectors in vertical and horizontal Roman Pots; integration of detector packages with cooling systems in Roman Pots. Continue R&D for the large upgrades expected during LS2 planned around 2022, in particular in the fields of electronics, physica and silto and sensors, large micro-pattern gas detectors, detector cooling and parallelisation of software. ALICE: The Production Readiness Reviews for the ITS pixel chip (ALPIDE), the detector barrel mechanics and the cooling plant were successfully passed and the items have proceeded to production. The PRR for the ITS stalled and unality concluded, and the next steps will depend on the decision concerning the Prevessin computing centre. Offers for the Osical fibre infrastructure have been gathered and the final libre cable trays and test patch-cords form two providers are being installed in the end-ol-year technical stop. The installed on an the decision concerning the Prevessin computing centre. Off			
Goals CMS: Prepare for the insertion of the Pixel Phase 1 during YETS 2016/2017. Finalise the GEM Phase 2 demonstrator and install during YETS 2016/2017. Consolidate services for these sub-detectors. ALICE: The main objectives for the ITS upgrade in 2016 are the completion of all R&D activities and start of production. In particular the pixel chip production will start mid-2016 and the module production in the last timester of 2016. The O2 project will continue its R&D activities expectionally for housing the future O2 computing farm. LHCE: Continue R&D and in some cases start procurements and construction of components which will be installed during LS2 planned around 2018, following the TDRs that have all now been endorsed by the LHCC and subsequently approved. TOTEM: development of time detector sensors; installation of precision clock distribution in combination with the time detectors in vertical and horizontal Roman Pots; integration of detector packages with cooling systems in Roman Pots. Continue R&D for the large upgrades expected during LS3 planned around 2021, in particular in the fields of electronics, pixels and silicon sensors, large micro-pattern gas detectors, detector cooling and parallelisation of software. ALICE: The Production Readiness Reviews for the TS pixel chip (ALPIDE), the detector barrel mechanics and the cooling plant were successfully developed prototypes of the following components: the optical fibre infrastructure have been gathered and the final fibre of the C in December. For the New Small Wheel muon detector (NSW), a Module O has been completed at CERN and the Final Design Review for th			
Goals ALICE: The main objectives for the ITS upgrade in 2016 are the completion of all R&D activities and start of production. In particular the pixel chip production will start mid-2016 and the module production in the last trimester of 2016. The O2 project will continue its R&D activities that will be completed in 2017. In parallel to the involvement in ALICE operation, the TC team will work on the preparations for the LS2 upgrade, including surface areas like cleanrooms and assembly areas, as well as the preparations for changes of the infrastructure, specifically for housing the TDRs that have all now been endorsed by the LHCC and subsequently approved. TOTEM: development of time detector sensors; installation of precision clock distribution in combination with the time detectors in vertical and horizontal Roman Pots; integration of detector packages with cooling systems in Roman Pots. Continue R&D for the large upgrades expected during LS3 planned around 2022, in particular in the fields of electronics, photonics, pixels and silicon sensors, large micro-pattern gas detectors, detector cooling and parallelisation of software. ALICE: The Production Readiness Reviews for the ITS pixel chip (ALPIDE), the detector barrel mechanics and the cooling plant were successfully passed and the items have proceeded to production. The PRR for the 1TS staves will take place in March 2017. The O2 project has successfully developed prototypes of the following components: the detector read-out, the data quality control and the final fiber cable trays and test path-cords from two providers are being installed in the end-oy-ear technical Sup. The installation of a cleanroom for ITS assembly and integration tests as well as a cleanroom for the TPC upgrade are ongoing. ALLCE: The Phase-I projects have made substantial progress during 2016. The first Phase-II Technical Design Report (T			
Goals pixel chip production will start mid-2016 and the module production in the last trimester of 2016. The O2 project will continue its R&D activities that will be completed in 2017. In parallel to the involvement in ALICE operation, the TC team will work on the preparations for the LS2 upgrade, including surface areas like cleanrooms and assembly areas, as well as the preparations for changes of the infrastructure, specifically for housing the future O2 computing farm. LHCb: Continue R&D and in some cases start procurements and construction of components which will be installed during LS2 planned around 2018, following the TDRs that have all now been endorsed by the LHCC and subsequently approved. TOTEM: development of time detector sensors; installation of precision clock distribution in combination with the time detectors in vertical and horizontal Roman Pots; integration of detector packages with cooling systems in Roman Pots. Continue R&D for the large upgrades expected during LS3 planned around 2022, in particular in the fields of electronics, pixels and silicon sensors, large micro-pattern gas detectors, detector cooling and parallelisation of software. ALICE: The Production Readiness Reviews for the ITS pixel chip (ALPIDE), the detector barrel mechanics and the cooling plant were successfully peoped protypes of the following components: the detector read-cut, the data quality control and the computing farm monitoring system. The call for tender for a container solution at Poni: 2 has been successfully concluded, and the next steps will depend on the decision concerning the Prevessin computing centre. Offers for the optical fibre infrastructure have been gathered and the final fibre cable trays and test patch-cords from two providers are being installed in the end-of-year technical besign Report (TDR) for the Strip detector of the new Inner Tracker (ITR) wa			YETS 2016/2017. Consolidate services for these sub-detectors.
Goals that will be completed in 2017. In parallel to the involvement in ALICE operation, the TC team will work on the preparations for the LS2 upgrade, including surface areas like cleanrooms and assembly areas, as well as the preparations for changes of the infrastructure, specifically for housing the future O2 computing farm. LHCb: Continue R&D and in some cases start procurements and construction of components which will be installed during LS2 planned around 2018, following the TDRs that have all now been endorsed by the LHCC and subsequently approved. TOTEM: development of time detector sensors; installation of precision clock distribution in combination with the time detectors in vertical and horizontal Roman Pots; integration of detector packages with cooling systems in Roman Pots. Continue R&D for the large upgrades expected during LS3 planned around 2022, in particular in the fields of electronics, photonics, pixels and silicon sensors, large micro-pattern gas detectors, detector cooling and parallelisation of software. ALICE: The Production Readiness Reviews for the ITS pixel chip (ALPIDE), the detector barrel mechanics and the computing farm monitoring system. The call for tender for a container solution at Point 2 has been successfully control and the computing farm monitoring system. The call for tender for a container solution at Point 2 has been successfully concluded, and the next steps will depend on the decision concerning the Prevessin computing centre. Offers for the optical fibre infrastructure have been gathered and the final fibre cable trays and test patch-cords from two providers are being installed in the end-of-year technical stop. The installation of a cleanroom for ITS assembly and integration tests as well as a cleanroom for the TPC upgrade are ongrid. AtLAS: The Phase-I projects have made substantial p			ALICE: The main objectives for the ITS upgrade in 2016 are the completion of all R&D activities and start of production. In particular the
Goals that will be completed in 2017. In parallel to the involvement in ALICE operation, the TC team will work on the preparations for the LS2 upgrade, including surface areas like cleanrooms and assembly areas, as well as the preparations for changes of the infrastructure, specifically for housing the future O2 computing farm. LHCb: Continue R&D and in some cases start procurements and construction of components which will be installed during LS2 planned around 2018, following the TDRs that have all now been endorsed by the LHCC and subsequently approved. TOTEM: development of time detector sensors; installation of precision clock distribution in combination with the time detectors in vertical and horizontal Roman Pots; integration of detector packages with cooling systems in Roman Pots. Continue R&D for the large upgrades expected during LS3 planned around 2022, in particular in the fields of electronics, photonics, pixels and silicon sensors, large micro-pattern gas detectors, detector cooling and parallelisation of software. ALICE: The Production Readiness Reviews for the ITS pixel chip (ALPIDE), the detector barrel mechanics and the computing farm monitoring system. The call for tender for a container solution at Point 2 has been successfully conclude, and the installation of a cleanroom for TIS assembly and itergration tests as well as a cleanroom for the TPC upgrade are orgoing. AtLAS: The Phase-I projects have made substantial progress during 2016. The first Phase-II Technical Design Review for the Micromegas detectors (MM) has been pasked. For the MMs have been completed at CFRN and the Final Design Review for the Micromegas detectors (MM) has been pasked. For the MMs have been completed at CFRN and the Final Design Review for the Micromegas detector in the suparated and the spasked the Final Design Review for the Micromega			pixel chip production will start mid-2016 and the module production in the last trimester of 2016. The O2 project will continue its R&D activities
 upgrade, including surface areas like cleanrooms and assembly areas, as well as the preparations for changes of the intrastructure, specifically for housing the future 02 computing farm. LHCb: Continue R&D and in some cases start procurements and construction of components which will be installed during LS2 planned around 2018, following the TDRs that have all now been endorsed by the LHCC and subsequently approved. TOTEM: development of time detector sensors; installation of precision clock distribution in combination with the time detectors in vertical and horizontal Roman Pots; integration of detector packages with cooling systems in Roman Pots. Continue R&D for the large upgrades expected during LS3 planned around 2022, in particular in the fields of electronics, photonics, pixels and silicon sensors, large micro-pattern gas detectors, detector cooling and parallelisation of software. ALICE: The Production Readiness Reviews for the ITS pixel chip (ALPIDE), the detector barrel mechanics and the cooling plant were successfully passed and the items have proceeded to production. The PRR for the ITS staves will take place in March 2017. The O2 project has successfully developed prototypes of the following components: the detector read-out, the data quality control and the computing farm monitoring system. The call for tender for a container solution at Point 2 has been successfully concluded, and the next steps will depend on the decision concerning the Prevessin computing centre. Offers for the optical fibre infrastructure have been gathered and the final fibre cable trays and test patch-cords from two providers are being installed in the end-of-year technical Design Report (TDR) for the Strip detector of the new Inner Tracker (ITK) was submitted to the LHCC in December. For the New Small Wheel muon detector (NSW), a Module- 0 has been completed at CERN and the Final Design Review for the Micromagas detectors (MM) has been passed. For the MM of the NSW, absein		Caala	
 LHCb: Continue R&D and in some cases start procurements and construction of components which will be installed during LS2 planned around 2018, following the TDRs that have all now been endorsed by the LHCC and subsequently approved. TOTEM: development of time detector sensors; installation of precision clock distribution in combination with the time detectors in vertical and horizontal Roman Pots; integration of detector packages with cooling systems in Roman Pots. Continue R&D for the large upgrades expected during LS3 planned around 2022, in particular in the fields of electronics, photonics, pixels and silicon sensors, large micro-patterm gas detectors, detector cooling and parallelisation of software. ALICE: The Production Readiness Reviews for the ITS pixel chip (ALPIDE), the detector barrel mechanics and the cooling plant were successfully developed prototypes of the following components: the detector read-out, the data quality control and the computing farm monitoring system. The call for tender for a container solution at Point 2 has been successfully concluded, and the next steps will depend on the decision concerning the Prevessin computing centre. Offers for the optical fibre infrastructure have been gathered and the final fibre cable trays and test patch-cords from two providers are being installed in the end-of-year technical stop. The installation of a cleanroom for ITS assembly and integration tests as well as a cleanroom for the ITCC upgrade are ongoing. ATLAS: The Phase-I projects have made substantial progress during 2016. The first Phase-II Technical Design Report (TDR) for the Strip detector of the new Inner Tracker (ITk) was submitted to the LHCC in December. For the New Small Wheel muon detector (NSW), a Module-O has been completed at CERN and the Final Design Review for the Micromegas detectors (MM) has been passed. For the MMs despite facing serious challenges due to delays in industry, significant progress has been made, and the first		Guais	upgrade, including surface areas like cleanrooms and assembly areas, as well as the preparations for changes of the infrastructure,
ALLE: The Production Readiness Reviews for the TDS pixel chip Content of the Strip detector sensors; installation of precision clock distribution in combination with the time detectors in vertical and horizontal Roman Pots; integration of detector packages with cooling systems in Roman Pots. Continue R&D for the large upgrades expected during LS3 planned around 2022, in particular in the fields of electronics, photonics, pixels and silicon sensors, large micro-pattern gas detectors, detector cooling and parallelisation of software. ALICE: The Production Readiness Reviews for the ITS pixel chip (ALPIDE), the detector barrel mechanics and the cooling plant were successfully passed and the items have proceeded to production. The PRR for the ITS staves will take place in March 2017. The O2 project has successfully passed and the items have proceeded to production. The PRR for the ITS staves will take place in March 2017. The O2 project has successfully passed and the items have proceeded to production. The PRR for the ITS staves will take place in March 2017. The O2 project has successfully passed and the items for a container solution at Point 2 has been successfully concluded, and the next steps will depend on the decision concerning the Prevess in computing centre. Offers for the optical fibre infrastructure have been gathered and the final fibre cable trays and test patch-cords from two providers are being installed in the end-of-year technical Design Report (TDR) for the Strip detector of the new Inner Tracker (ITK) was submitted to the LHCC in December. For the New Small Wheel muon detector (NSW), a Module-O has been completed at CERN and the Final Design Review for the Micromegas detectors (MM) has been passed. For the MMs of the NSW, despite facing serious challenges due to delays in industry, significant progress has been made, and the first PCB modules for the MMs have been produced. The mechanical support structure of the entire NSW has been desidped, tested and has passed the Final Design Review. The LA			specifically for housing the future O2 computing farm.
 TOTEM: development of time detector sensors; installation of precision clock distribution in combination with the time detectors in vertical and horizontal Roman Pots; integration of detector packages with cooling systems in Roman Pots. Continue R&D for the large upgrades expected during LS3 planned around 2022, in particular in the fields of electronics, photonics, pixels and silicon sensors, large micro-patterm gas detectors, detector cooling and parallelisation of software. ALICE: The Production Readiness Reviews for the ITS pixel chip (ALPIDE), the detector barrel mechanics and the cooling plant were successfully developed prototypes of the following components: the detector read-out, the data quality control and the computing farm monitoring system. The call for tender for a container solution at Point 2 has been successfully concluded, and the next steps will depend on the decision concerning the Prevessin computing centre. Offers for the optical fibre infrastructure have been gathered and the final fibre cable trays and test patch-cords from two providers are being installed in the end-of-year technical stop. The installation of a cleanroom for ITS assembly and integration tests as well as a cleanroom for the TPC upgrade are ongoing. ATLAS: The Phase-I project have made substantial progress during 2016. The first Phase-II Technical Design Report (TDR) for the Strip detector of the new Inner Tracker (ITk) was submitted to the LHCC in December. For the New Small Wheel muon detector (NSW), a Module-O has been completed at CERN and the Final Design Review for the Micromegas detectors (MM) has been passed. For the MM of the NSW, have been produced. The mechanical support structure of the entire NSW has been designed, tested and has passed the Final Design Review. The LAr Phase-I upgrade project is making yery good progress. A back-up solution has been developed for a custom serialiser ASIC, which the manufacturer has failed to produce reliably so far. Concerning the MUCT			LHCb: Continue R&D and in some cases start procurements and construction of components which will be installed during LS2 planned
Achievements Achie			
 expected during LS3 planned around 2022, in particular in the fields of electronics, pixels and silicon sensors, large micro-pattern gas detectors, detector cooling and parallelisation of software. ALICE: The Production Readiness Reviews for the ITS pixel chip (ALPIDE), the detector barrel mechanics and the cooling plant were successfully passed and the items have proceeded to production. The PRR for the ITS staves will take place in March 2017. The O2 project has successfully developed prototypes of the following components: the detector read-out, the data quality control and the computing farm monitoring system. The call for tender for a container solution at Point 2 has been successfully concluded, and the next steps will depend on the decision concerning the Prevessin computing centre. Offers for the optical fibre infrastructure have been gathered and the final fibre cable trays and test patch-cords from two providers are being installed in the end-of-year technical stop. The installation of a cleanroom for ITS assembly and integration tests as well as a cleanroom for the TPC upgrade are ongoing. ATLAS: The Phase-I projects have made substantial progress during 2016. The first Phase-II Technical Design Report (TDR) for the Strip detector of the new Inner Tracker (ITk) was submitted to the LHCC in December. For the New Small Wheel muon detector (NSW), a Module-O has been completed at CERN and the Final Design Review for the Micromegas detectors (MM) has been passed. For the MMs have been produced. The mechanical support structure of the entire NSW has been made, and the first PCB modules for the MSW, have been produced. The manufacture has been ordered. An assembled prototype module is expected in the first quarter of 2017. A successful integration test between a MUCTPI demonstrator system and a TGC Sector-Logic prototype was performed in November 2016. For the Phase-II projects, the decision process for the TDAQ trigger architecture has been completed. The layout of th			
ALICE: The Production Readiness Reviews for the ITS pixel chip (ALPIDE), the detector barrel mechanics and the cooling plant were successfully passed and the items have proceeded to production. The PRR for the ITS staves will take place in March 2017. The O2 project has successfully developed prototypes of the following components: the detector read-out, the data quality control and the computing farm monitoring system. The call for tender for a container solution at Point 2 has been successfully concluded, and the next steps will depend on the decision concerning the Prevessin computing centre. Offers for the optical fibre infrastructure have been gathered and the final fibre cable trays and test patch-cords from two providers are being installed in the end-of-year technical stop. The installation of a cleanroom for ITS assembly and integration tests as well as a cleanroom for the TPC upgrade are ongoing. ATLAS: The Phase-I projects have made substantial progress during 2016. The first Phase-II Technical Design Report (TDR) for the Strip detector of the new Inner Tracker (ITk) was submitted to the LHCC in December. For the New Small Wheel muon detector (NSW), a Module-O has been completed at CERN and the Final Design Review for the Micromegas detectors (MM) has been passed. For the MMs of the NSW, despite facing serious challenges due to delays in industry, significant progress has been made, and the first PCB modules for the MMs have been produced. The mechanical support structure of the entire NSW has been designed, tested and has passed the Final Design Review. The LAr Phase-I upgrade project is making very good progress. A back-up solution has been developed for a custom serialiser ASIC, which the manufacturer has failed to produce reliably so far. Concerning the MUCTPI, the specification and design of the prototype has been completed, and the hardware has been ordered. An assembled prototype module is expected in the first quarter of 2017. A successful integration test between a MUCTPI demonstrator system			
ALICE: The Production Readiness Reviews for the ITS pixel chip (ALPIDE), the detector barrel mechanics and the cooling plant were successfully passed and the items have proceeded to production. The PRR for the ITS staves will take place in March 2017. The O2 project has successfully developed prototypes of the following components: the detector read-out, the data quality control and the computing farm monitoring system. The call for tender for a container solution at Point 2 has been successfully concluded, and the next steps will depend on the decision concerning the Prevessin computing centre. Offers for the optical fibre infrastructure have been gathered and the final fibre cable trays and test patch-cords from two providers are being installed in the end-of-year technical stop. The installation of a cleanroom for ITS assembly and integration tests as well as a cleanroom for the TPC upgrade are ongoing. ATLAS: The Phase-I projects have made substantial progress during 2016. The first Phase-II Technical Design Report (TDR) for the Strip detector of the new Inner Tracker (ITk) was submitted to the LHCC in December. For the New Small Wheel muon detector (NSW), a Module-O has been completed at CERN and the Final Design Review for the Micromegas detectors (MM) has been passed. For the MMs of the NSW, despite facing serious challenges due to delays in industry, significant progress has been made, and the first PCB modules for the MMs have been produced. The mechanical support structure of the entire NSW has been designed, tested and has passed the Final Design Review. The LAr Phase-I upgrade project is making very good progress. A back-up solution has been developed for a custom serialiser ASIC, which the manufacturer has failed to produce reliably so far. Concerning the MUCTPI, the specification and design of the prototype has been completed, and the hardware has been ordered. An assembled prototype module is expected in the first quarter of 2017. A successful integration test between a MUCTPI demonstrator system			
 successfully passed and the items have proceeded to production. The PRR for the ITS staves will take place in March 2017. The O2 project has successfully developed prototypes of the following components: the detector read-out, the data quality control and the computing farm monitoring system. The call for tender for a container solution at Point 2 has been successfully concluded, and the next steps will depend on the decision concerning the Prevessin computing centre. Offers for the optical fibre infrastructure have been gathered and the final fibre cable trays and test patch-cords from two providers are being installed in the end-of-year technical stop. The installation of a cleanroom for ITS assembly and integration tests as well as a cleanroom for the TPC upgrade are ongoing. ATLAS: The Phase-I projects have made substantial progress during 2016. The first Phase-II Technical Design Report (TDR) for the Strip detector of the new Inner Tracker (ITk) was submitted to the LHCC in December. For the New Small Wheel muon detector (NSW), a Module-O has been completed at CERN and the Final Design Review for the Micromegas detectors (MM) has been passed. For the MM of the NSW, despite facing serious challenges due to delays in industry, significant progress has been made, and the first PCB modules for the MMs have been produced. The mechanical support structure of the entire NSW has been designed, tested and has passed the Final Design Review. The LAr Phase-I upgrade project is making very good progress. A back-up solution has been developed for a custom serialiser ASIC, which the manufacturer has failed to produce reliably so far. Concerning the MUCTPI, the specification and design of the prototype has been completed, and the hardware has been ordered. An assembled prototype module is expected in the first quarter of 2017. A successful integration test between a MUCTPI demonstrator system and a TGC Sector-Logic prototype was performed in November 2016. For the Phase-II projects, the decision			
 Achievements has successfully developed prototypes of the following components: the detector read-out, the data quality control and the computing farm monitoring system. The call for tender for a container solution at Point 2 has been successfully concluded, and the next steps will depend on the decision concerning the Prevessin computing centre. Offers for the optical fibre infrastructure have been gathered and the final fibre cable trays and test patch-cords from two providers are being installed in the end-of-year technical stop. The installation of a cleanroom for ITS assembly and integration tests as well as a cleanroom for the TPC upgrade are ongoing. ATLAS: The Phase-I projects have made substantial progress during 2016. The first Phase-II Technical Design Report (TDR) for the Strip detector of the new Inner Tracker (ITK) was submitted to the LHCC in December. For the New Small Wheel muon detector (NSW), a Module-O has been completed at CERN and the Final Design Review for the Micromegas detectors (MM) has been passed. For the MM of the NSW, despite facing serious challenges due to delays in industry, significant progress has been made, and the first PCB modules for the MMs have been produced. The mechanical support structure of the entire NSW has been designed, tested and has passed the Final Design Review. The LAr Phase-I upgrade project is making very good progress. A back-up solution has been developed for a custom serialiser ASIC, which the manufacturer has failed to produce reliably so far. Concerning the MUCTPI, the specification and design of the prototype has been completed, and the hardware has been ordered. An assembled prototype module is expected in the first quarter of 2017. A successful integration test between a MUCTPI demonstrator system and a TGC Sector-Logic prototype was performed in November 2016. For the Phase-II projects, the decision process for the TDAQ trigger architecture has been completed. The layout of the new ATLAS Inner Tracker is nea			
Achievements Achievements Achievements monitoring system. The call for tender for a container solution at Point 2 has been successfully concluded, and the next steps will depend on the decision concerning the Prevessin computing centre. Offers for the optical fibre infrastructure have been gathered and the final fibre cable trays and test patch-cords from two providers are being installed in the end-of-year technical stop. The installation of a cleanroom for ITS assembly and integration tests as well as a cleanroom for the TPC upgrade are ongoing. ATLAS: The Phase-I projects have made substantial progress during 2016. The first Phase-II Technical Design Report (TDR) for the Strip detector of the new Inner Tracker (ITk) was submitted to the LHCC in December. For the New Small Wheel muon detector (NSW), a Module- 0 has been completed at CERN and the Final Design Review for the Micromegas detectors (MM) has been passed. For the MM of the NSW, despite facing serious challenges due to delays in industry, significant progress has been made, and the first PCB modules for the MMs have been produced. The mechanical support structure of the entire NSW has been designed, tested and has passed the Final Design Review. The LAr Phase-I upgrade project is making very good progress. A back-up solution has been developed for a custom serialiser ASIC, which the manufacturer has failed to produce reliably so far. Concerning the MUCTPI, the specification and design of the prototype has been completed, and the hardware has been ordered. An assembled prototype module is expected in the first quarter of 2017. A successful integration test between a MUCTPI demonstrator system and a TGC Sector-Logic prototype was performed in November 2016. For the Phase-I upgrade is being installed as foreseen. The detector parts have been produced in various laboratory around the world and are delivered to CERN where the final integration in the CMS detector is taking place. Ten GEM chambers have been produced and are now installed			
Achievements Achievements on the decision concerning the Prevessin computing centre. Offers for the optical fibre infrastructure have been gathered and the final fibre cable trays and test patch-cords from two providers are being installed in the end-of-year technical stop. The installation of a cleanroom for ITS assembly and integration tests as well as a cleanroom for the TPC upgrade are ongoing. ATLAS: The Phase-I projects have made substantial progress during 2016. The first Phase-II Technical Design Report (TDR) for the Strip detector of the new Inner Tracker (ITk) was submitted to the LHCC in December. For the New Small Wheel muon detector (NSW), a Module- 0 has been completed at CERN and the Final Design Review for the Micromegas detectors (MM) has been passed. For the MM of the NSW, despite facing serious challenges due to delays in industry, significant progress has been made, and the first PCB modules for the MMs have been produced. The mechanical support structure of the entire NSW has been designed, tested and has passed the Final Design Review. The LAr Phase-I upgrade project is making very good progress. A back-up solution has been developed for a custom serialiser ASIC, which the manufacturer has failed to produce reliably so far. Concerning the MUCTPI, the specification and design of the prototype has been completed, and the hardware has been ordered. An assembled prototype module is expected in the first quarter of 2017. A successful integration test between a MUCTPI demonstrator system and a TGC Sector-Logic prototype was performed in November 2016. For the Phase-I upgrade is being installed as foreseen. The detector parts have been produced in various laboratory around the world and are delivered to CERN where the final integration in the CMS detector is taking place. Ten GEM chambers have been produced and are now installed in the endcap of CMS to fully demonstrate the mechanical installation procedures, the services and eventually the			
 Achievements Achievements Achievements Cable trays and test patch-cords from two providers are being installed in the end-of-year technical stop. The installation of a cleanroom for ITS assembly and integration tests as well as a cleanroom for the TPC upgrade are ongoing. ATLAS: The Phase-I projects have made substantial progress during 2016. The first Phase-II Technical Design Report (TDR) for the Strip detector of the new Inner Tracker (ITk) was submitted to the LHCC in December. For the New Small Wheel muon detector (NSW), a Module-O has been completed at CERN and the Final Design Review for the Micromegas detectors (MM) has been passed. For the MM of the NSW, despite facing serious challenges due to delays in industry, significant progress has been made, and the first PCB modules for the MMs have been produced. The mechanical support structure of the entire NSW has been designed, tested and has passed the Final Design Review. The LAr Phase-I upgrade project is making very good progress. A back-up solution has been developed for a custom serialiser ASIC, which the manufacturer has failed to produce reliably so far. Concerning the MUCTPI, the specification and design of the prototype has been completed, and the hardware has been ordered. An assembled prototype module is expected in the first quarter of 2017. A successful integration test between a MUCTPI demonstrator system and a TGC Sector-Logic prototype was performed in November 2016. For the Phase-II projects, the decision is prepared for early 2017. CMS: The Phase-I upgrade is being installed as foreseen. The detector parts have been produced in various laboratory around the world and are delivered to CERN where the final integration in the CMS detector is taking place. Ten GEM chambers have been produced and are now installed in the endcap of CMS to fully demonstrate the mechanical installation procedures, the services and eventually the 			
Achievements Achievements Achievements Achievements ArLAS: The Phase-I projects have made substantial progress during 2016. The first Phase-II Technical Design Report (TDR) for the Strip detector of the new Inner Tracker (ITk) was submitted to the LHCC in December. For the New Small Wheel muon detector (NSW), a Module- 0 has been completed at CERN and the Final Design Review for the Micromegas detectors (MM) has been passed. For the MM of the NSW, despite facing serious challenges due to delays in industry, significant progress has been made, and the first PCB modules for the MMs have been produced. The mechanical support structure of the entire NSW has been designed, tested and has passed the Final Design Review. The LAr Phase-I upgrade project is making very good progress. A back-up solution has been developed for a custom serialiser ASIC, which the manufacturer has failed to produce reliably so far. Concerning the MUCTPI, the specification and design of the prototype has been completed, and the hardware has been ordered. An assembled prototype module is expected in the first quarter of 2017. A successful integration test between a MUCTPI demonstrator system and a TGC Sector-Logic prototype was performed in November 2016. For the Phase-II projects, the decision process for the TDAQ trigger architecture has been completed. The layout of the new ATLAS Inner Tracker is nearly complete and a decision is prepared for early 2017. CMS: The Pixel Phase-I upgrade is being installed as foreseen. The detector parts have been produced in various laboratory around the world and are delivered to CERN where the final integration in the CMS detector is taking place. Ten GEM chambers have been produced and are now installed in the endcap of CMS to fully demonstrate the mechanical installation procedures, the services and eventually the			
Achievements Achie			
Achievements detector of the new Inner Tracker (ITk) was submitted to the LHCC in December. For the New Small Wheel muon detector (NSW), a Module- 0 has been completed at CERN and the Final Design Review for the Micromegas detectors (MM) has been passed. For the MM of the NSW, despite facing serious challenges due to delays in industry, significant progress has been made, and the first PCB modules for the MMs have been produced. The mechanical support structure of the entire NSW has been designed, tested and has passed the Final Design Review. The LAr Phase-I upgrade project is making very good progress. A back-up solution has been developed for a custom serialiser ASIC, which the manufacturer has failed to produce reliably so far. Concerning the MUCTPI, the specification and design of the prototype has been completed, and the hardware has been ordered. An assembled prototype module is expected in the first quarter of 2017. A successful integration test between a MUCTPI demonstrator system and a TGC Sector-Logic prototype was performed in November 2016. For the Phase-II projects, the decision process for the TDAQ trigger architecture has been completed. The layout of the new ATLAS Inner Tracker is nearly complete and a decision is prepared for early 2017. CMS : The Pixel Phase-I upgrade is being installed as foreseen. The detector parts have been produced in various laboratory around the world and are delivered to CERN where the final integration in the CMS detector is taking place. Ten GEM chambers have been produced and are now installed in the endcap of CMS to fully demonstrate the mechanical installation procedures, the services and eventually the			
Achievements 0 has been completed at CERN and the Final Design Review for the Micromegas detectors (MM) has been passed. For the MM of the NSW, despite facing serious challenges due to delays in industry, significant progress has been made, and the first PCB modules for the MMs have been produced. The mechanical support structure of the entire NSW has been designed, tested and has passed the Final Design Review. The LAr Phase-I upgrade project is making very good progress. A back-up solution has been developed for a custom serialiser ASIC, which the manufacturer has failed to produce reliably so far. Concerning the MUCTPI, the specification and design of the prototype has been completed, and the hardware has been ordered. An assembled prototype module is expected in the first quarter of 2017. A successful integration test between a MUCTPI demonstrator system and a TGC Sector-Logic prototype was performed in November 2016. For the Phase-II projects, the decision process for the TDAQ trigger architecture has been completed. The layout of the new ATLAS Inner Tracker is nearly complete and a decision is prepared for early 2017. CMS : The Pixel Phase-I upgrade is being installed as foreseen. The detector parts have been produced in various laboratory around the world and are delivered to CERN where the final integration in the CMS detector is taking place. Ten GEM chambers have been produced and are now installed in the endcap of CMS to fully demonstrate the mechanical installation procedures, the services and eventually the			
Achievements despite facing serious challenges due to delays in industry, significant progress has been made, and the first PCB modules for the MMs have been produced. The mechanical support structure of the entire NSW has been designed, tested and has passed the Final Design Review. The LAr Phase-I upgrade project is making very good progress. A back-up solution has been developed for a custom serialiser ASIC, which the manufacturer has failed to produce reliably so far. Concerning the MUCTPI, the specification and design of the prototype has been completed, and the hardware has been ordered. An assembled prototype module is expected in the first quarter of 2017. A successful integration test between a MUCTPI demonstrator system and a TGC Sector-Logic prototype was performed in November 2016. For the Phase-II projects, the decision process for the TDAQ trigger architecture has been completed. The layout of the new ATLAS Inner Tracker is nearly complete and a decision is prepared for early 2017. CMS : The Pixel Phase-I upgrade is being installed as foreseen. The detector parts have been produced in various laboratory around the world and are delivered to CERN where the final integration in the CMS detector is taking place. Ten GEM chambers have been produced and are now installed in the endcap of CMS to fully demonstrate the mechanical installation procedures, the services and eventually the			
have been produced. The mechanical support structure of the entire NSW has been designed, tested and has passed the Final Design Review. The LAr Phase-I upgrade project is making very good progress. A back-up solution has been developed for a custom serialiser ASIC, which the manufacturer has failed to produce reliably so far. Concerning the MUCTPI, the specification and design of the prototype has been completed, and the hardware has been ordered. An assembled prototype module is expected in the first quarter of 2017. A successful integration test between a MUCTPI demonstrator system and a TGC Sector-Logic prototype was performed in November 2016. For the Phase-II projects, the decision process for the TDAQ trigger architecture has been completed. The layout of the new ATLAS Inner Tracker is nearly complete and a decision is prepared for early 2017. CMS : The Pixel Phase-I upgrade is being installed as foreseen. The detector parts have been produced in various laboratory around the world and are delivered to CERN where the final integration in the CMS detector is taking place. Ten GEM chambers have been produced and are now installed in the endcap of CMS to fully demonstrate the mechanical installation procedures, the services and eventually the		Achievemente	
Review. The LAr Phase-I upgrade project is making very good progress. A back-up solution has been developed for a custom serialiser ASIC, which the manufacturer has failed to produce reliably so far. Concerning the MUCTPI, the specification and design of the prototype has been completed, and the hardware has been ordered. An assembled prototype module is expected in the first quarter of 2017. A successful integration test between a MUCTPI demonstrator system and a TGC Sector-Logic prototype was performed in November 2016. For the Phase-II projects, the decision process for the TDAQ trigger architecture has been completed. The layout of the new ATLAS Inner Tracker is nearly complete and a decision is prepared for early 2017. CMS : The Pixel Phase-I upgrade is being installed as foreseen. The detector parts have been produced in various laboratory around the world and are delivered to CERN where the final integration in the CMS detector is taking place. Ten GEM chambers have been produced and are now installed in the endcap of CMS to fully demonstrate the mechanical installation procedures, the services and eventually the	ſ	Acmevements	
ASIC, which the manufacturer has failed to produce reliably so far. Concerning the MUCTPI, the specification and design of the prototype has been completed, and the hardware has been ordered. An assembled prototype module is expected in the first quarter of 2017. A successful integration test between a MUCTPI demonstrator system and a TGC Sector-Logic prototype was performed in November 2016. For the Phase-II projects, the decision process for the TDAQ trigger architecture has been completed. The layout of the new ATLAS Inner Tracker is nearly complete and a decision is prepared for early 2017. CMS : The Pixel Phase-I upgrade is being installed as foreseen. The detector parts have been produced in various laboratory around the world and are delivered to CERN where the final integration in the CMS detector is taking place. Ten GEM chambers have been produced and are now installed in the endcap of CMS to fully demonstrate the mechanical installation procedures, the services and eventually the			
has been completed, and the hardware has been ordered. An assembled prototype module is expected in the first quarter of 2017. A successful integration test between a MUCTPI demonstrator system and a TGC Sector-Logic prototype was performed in November 2016. For the Phase-II projects, the decision process for the TDAQ trigger architecture has been completed. The layout of the new ATLAS Inner Tracker is nearly complete and a decision is prepared for early 2017. CMS : The Pixel Phase-I upgrade is being installed as foreseen. The detector parts have been produced in various laboratory around the world and are delivered to CERN where the final integration in the CMS detector is taking place. Ten GEM chambers have been produced and are now installed in the endcap of CMS to fully demonstrate the mechanical installation procedures, the services and eventually the			
successful integration test between a MUCTPI demonstrator system and a TGC Sector-Logic prototype was performed in November 2016. For the Phase-II projects, the decision process for the TDAQ trigger architecture has been completed. The layout of the new ATLAS Inner Tracker is nearly complete and a decision is prepared for early 2017. CMS : The Pixel Phase-I upgrade is being installed as foreseen. The detector parts have been produced in various laboratory around the world and are delivered to CERN where the final integration in the CMS detector is taking place. Ten GEM chambers have been produced and are now installed in the endcap of CMS to fully demonstrate the mechanical installation procedures, the services and eventually the			
For the Phase-II projects, the decision process for the TDAQ trigger architecture has been completed. The layout of the new ATLAS Inner Tracker is nearly complete and a decision is prepared for early 2017. CMS : The Pixel Phase-I upgrade is being installed as foreseen. The detector parts have been produced in various laboratory around the world and are delivered to CERN where the final integration in the CMS detector is taking place. Ten GEM chambers have been produced and are now installed in the endcap of CMS to fully demonstrate the mechanical installation procedures, the services and eventually the			
Tracker is nearly complete and a decision is prepared for early 2017. CMS : The Pixel Phase-I upgrade is being installed as foreseen. The detector parts have been produced in various laboratory around the world and are delivered to CERN where the final integration in the CMS detector is taking place. Ten GEM chambers have been produced and are now installed in the endcap of CMS to fully demonstrate the mechanical installation procedures, the services and eventually the			
CMS : The Pixel Phase-I upgrade is being installed as foreseen. The detector parts have been produced in various laboratory around the world and are delivered to CERN where the final integration in the CMS detector is taking place. Ten GEM chambers have been produced and are now installed in the endcap of CMS to fully demonstrate the mechanical installation procedures, the services and eventually the			
world and are delivered to CERN where the final integration in the CMS detector is taking place. Ten GEM chambers have been produced and are now installed in the endcap of CMS to fully demonstrate the mechanical installation procedures, the services and eventually the			
and are now installed in the endcap of CMS to fully demonstrate the mechanical installation procedures, the services and eventually the			
performance of these devices, which are meant eventually to withstand the HL-LHC conditions.			
			performance of these devices, which are meant eventually to withstand the HL-LHC conditions.

25. LHC detectors upgrade (Phase 1) and consolidation / HL-LHC detectors, including R&D (Phase 2) (cont.)

LHCb: the upgrade, scheduled for installation in LS2 has made further significant progress. Due to a delayed start of LS2 and Run 3 (beginning of 2021), schedules and milestones have been redefined. Progress on subsystem and common projects is steady, along with the exciting start of Run 2. Several Engineering Design Reviews and PRRs have been achieved: components are going through procurement process, together with test-beam activity dedicated to subsystem gualification. Studies and R&D dedicated to LS3 and successive runs have begun, with a goal of bringing the detector to accept a maximum luminosity of 10³⁴ cm⁻²s⁻¹, and a staged strategy is being developed. **DT** in collaboration with the ATLAS team has completed the Micromegas Module-0, technology and tools have been transferred to the assembly sites. Contributed to the design and preparation for production of the ALICE ITS. For CMS, DT gave engineering advisory support to the studies and mock- up work done for the Phase-I Pixel detector installation. R&D for Phase-II detectors focused on the proposal of a layout for the ATLAS ITK pixel, and the development of novel modules for the CMS Tracker Phase-II upgrade, design of the mechanics and Achievements cooling for the upgrade tracker, the latter being a long-term R&D activity carried out in common for ATLAS and CMS. Efforts to improve the performance and greenhouse environmental footprint of gas systems for future detectors have been launched. ESE has finalised the design of the ALICE ITS chip (ALPIDE) and actively participate in the system design and in the implementation of the assembly process. The first prototype of the VELOPIX ASIC for the LHCb VELO upgrade has been delivered and is being validated. The optical links for the CMS pixel upgrade have been delivered. The design of the ASICs and front-end hybrids for the CMS ITK upgrade has been well advanced and the procurement process for the hybrids worked out. The group also provided a significant work for the system design of the CMS High Granularity Calorimeter. The design of the upgrade of the ATLAS central trigger logic for phase 1 made significant progress (ready to build a prototype of the new muon to central trigger processor interface). The specification of the readout ASICs for the ATLAS ITK upgrade has been almost finalised and the ASICs designs started. The common pixel detectors readout ASIC (RD53) is ready for submission in 2017. Last but not least ESE provided all the electronics coordinators of the LHC experiments.

Comparison Final 2016 Budget and 2016 Out-Turn (2016 prices)		Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
LHC detectors	Personnel (FTE)	45.2	45.2	49.3	109%	4.1	109%	4.1		
upgrade (Phase 1)	Personnel (kCHF)	10,270	10,270	11,743	114%	1,473	114%	1,473		
and consolidation	Materials (kCHF)	9,380	5,430	5,409	58%	-3,971	100%	-21	944	
	Total (kCHF)	19,650	15,700	17,152	87%	-2,498	109%	1,452	944	
HL-LHC detectors,	Personnel (FTE)	26.3	25.3	16.9	64%	-9.4	67%	-8.4		
including R&D	Personnel (kCHF)	4,235	4,110	3,176	75%	-1,059	77%	-934		
(Phase 2)	Materials (kCHF)	4,500	3,305	3,226	72%	-1,274	98%	-79	557	
(Fila 30 2)	Total (kCHF)	8,735	7,415	6,403	73%	-2,332	86%	-1,012	557	
CERN contribution	Personnel (FTE)			2.3		2.3		2.3		
to HL-LHC	Personnel (kCHF)			626		626		626		
detectors (Phase	Materials (kCHF)									
2)	Total (kCHF)			626		626		626		

Energy frontier

26. Linear collider studies (CLIC, ILC)

	ollow up and document new baseline parameters including new power estimates for an optimised staged implementation. In pile options for electron beam tests at CERN beyond the CTF3 programme.
Exe	vecute the CTF3 programme measurements for the X-band structure breakdown rate with beam, phase stability and module performance udies.
	ptain first results from the drive beam gun and sub-harmonic buncher.
	efine with the ATF team the CLIC specific programme for the period 2016-2019.
	irsue the experimental program for CLIC damping ring technologies with collaborators.
Get	et all X-band test-stands into full operation, and define optimised/new structures for 3000GeV/380GeV, followed by preparation for industrial
	oduction of disks and full structures.
	ollow up XFEL collaboration plans and integrate in common studies with CLIC where possible. The 2 nd generation module plans to be firmed up and defined as a work-package for 2016-2019.
	immarise the beam based alignment studies, progress and tools.
	blow and participate in ILC preparation activities in collaboration with European laboratories and universities and facilitate the European
	eparatory studies in selected technical domains.
Achievements The Acc CA hav The per inst CE The har des 201 The	The CLIC initial stage has been defined at 380 GeV. In 2016 the parameters for a staged implementation starting at 380 GeV for Higgs and op physics, upgradeable to 3 TeV in two further stages, were further refined, based on an overall power and cost optimisation for the initial age. The resulting project plans were published as a CERN yellow report including updates of the physics reach for such a facility. The resulting project plans were published as a CERN yellow report including updates of the physics reach for such a facility. The resulting project plans were published as a CERN yellow report including updates of the physics reach for such a facility. The resulting project plans were published as a CERN yellow report including updates of the physics reach for such a facility. The resulting project plans were published as a CERN yellow report including updates of the physics reach for such a facility. The resulting project plans were published as a CERN yellow report including updates of the physics reach for such a facility. The resulting project plans were published as a CERN yellow report including updates of the physics reach for such a facility. The resulting project plans were published as a CERN yellow report including updates of the physics reach for such a facility. The studies of electron beam facilities at CERN after CTF3 were concluded. A new stand-alone user facility – CLEAR (CERN Linear Electron protocelerator for Research) – will be available for users from 2017 onwards. This new open electron beam facility is an adaptation of the ALIFES electron linac located in the experimental area of the CLIC Test Facility 3 (CTF3) at CERN. It capabilities and initial programme we been defined and documented, including its important role for future LC studies at CERN and for European researchers. The CTF3 programme was brought to successful conclusion by the end of 2016, proving the CLIC two beam concept and gradient erformance, measuring the X-band structure breakdown rate with beam, benchmarking the dri
201 The test	ne X-band stations at CERN have all been installed, tripling the X-band test capacity at CERN for accelerating structure and RF compo sts during the period 2016-2019. Optimised new structures for 3000GeV/380GeV were defined. The new CLIC 3TeV accelerating structure
201 The test	n18. The X-band stations at CERN have all been installed, tripling the X-band test capacity at CERN for accelerating structu

26. Linear collider studies (CLIC, ILC) (cont.)

		To promote X-band use in larger facilities and support collaborators interested in using the technology in compact FELs a European design
		study for X-band FEL implementations with ~25 collaborators is being prepared for submission at the end of March 2017.
		The CLIC module measurements in the laboratory and CTF3 beam are being completed and evaluated, together with results from the Marie
	Achievements	Curie studies of alignment, stability and system integration in the PACMAN project, in order to update the CLIC standard module design and
ľ	Acmevements	the construction/installation and operation schemes.
		The beam based alignment studies for CLIC have been summarised and published.
		The collaboration with ILC is continuing related to beamdynamics studies, SCRF, civil engineering and cryogenics, as well as common
		studies in ATF2 at KEK. The EJADE Marie Curie exchange programme is operational to support participation of European researchers in
		LC activities in Japan.

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (C)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	51.8	48.9	47.2	91%	-4.6	96%	-1.7		
Personnel (kCHF)	9,355	8,410	8,013	86%	-1,342	95%	-397		
Materials (kCHF)	14,190	12,290	10,064	71%	-4,126	82%	-2,226	2,866	
Total (kCHF)	23,545	20,700	18,077	77%	-5,468	87%	-2,623	2,866	

27. Linear collider detector R&D

Goals	Physics studies with electron-positron collisions at the energy frontier, including common reference studies with FCC, where possible. CLIC detector optimisation studies and accompanying simulation and reconstruction software developments as well as engineering and integration studies. Prototyping of a low-mass pixel detector with fast timing and small pixels and with power-pulsed read-out electronics (based on silicon/ASIC or HV-CMOS/ASIC). Definition of a hardware concept for a low-mass all-silicon tracker to linear collider specifications with manageable occupancies. Participation in the RD53 collaboration with ATLAS and CMS for the ASIC development. Participation in CALICE fine-grained calorimetry R&D (with either scintillator-SiPM or silicon readout) with the aim of reaching detailed understanding of responses, calibration and manufacturability for future collider applications. Overall progress in other key R&D items, e.g. super-conductors for a high-field detector solenoid, assessment of engineering and integration challenges. The primary activity of the Linear Collider Detector (LCD) project is to perform physics and detector studies for CLIC, in close cooperation											
Achievements	with the c software new CLIC and 3 Te presentin in R&D to of the ma tracker. T beam. Th The year invested of a verte detector of LCD also with activ application	correspondir suite that fe C staging ba eV. The phy g an overvie owards a sili in tracker la o this aim s ne results pr 2016 mark in other CE x detector fe optimisation participates /e silicon a ons. They a	ng ILC activi atures silico iseline has b ysics motiva ew of Higgs con tracking yout in the r ilicon/ASIC, ovide an im ed a gradua RN priority p or FCC-hh, s studies for s in the CMS nd scintillat	ties. A new o on-based trac been defined ation and comphysics at the system for C new CLIC de HV-CMOS/A proved under al change in the projects such making use of FCC-ee with S endcap call for planes. S	ptimised C ck reconstru- lt propose rresponding e three CLI CLIC. Perfo tector mode ASIC and fur standing a che Linear (as FCC-hil f optimisati n the aim c primeter up Similar tech erred optio	LIC detecto uction. Follo s a first sta g optimised C energy st rmance opt el. R&D was ully integrate nd a narrow Collider Det h, FCC-ee a ion tools init of proposing grade (CMS inologies w	r has been of owing detaile ge at 380 Ge accelerator ages was co imisation stu- s actively pur- ed CMOS tea ving down of sector R&D p and detector ially develop a CLIC-like S HGCal). The rere initially	defined. It go ed benchman eV centre-of design we ompleted. A s udies, togeth rsued on pix chnologies w the technolo project in the upgrades for ed for Linea e detector ac he future CM studied by	detector studies for CLIC, in close cooperation bes together with the completion of an improved rking of Higgs physics and top quark physics, a f-mass energy followed by upgrades to 1.5 TeV re published in a CERN report. A publication significant part of the LCD resources is invested er with engineering studies, led to the definition el modules for the vertex detector and the main were developed and tested at a CERN SPS test ogy options to be explored in the coming year. e sense that a fraction of the LCD resources is or HL-LHC. LCD is engaged in the optimisation ar Collider studies. Similarly, LCD is engaging in dapted to the FCC-ee experimental conditions. <i>I</i> S endcaps will feature fine-grained calorimetry the CALICE collaboration for Linear Collider lity for full-wafer silicon sensor testing and has			
Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments			

and 2016 Out- Turn (2016 prices)	(a)	(b)	(c)	(c)/(a)	(c)-(a)	(c)/(b)	(c)-(b)	Commitment
Personnel (FTE)	20.1	20.6	21.3	106%	1.2	103%	0.7	
Personnel (kCHF)	3,660	3,750	3,488	95%	-172	93%	-262	
Materials (kCHF)	650	670	607	93%	-43	91%	-63	25
Total (kCHF)	4,310	4,420	4,096	95%	-214	93%	-324	25

28. Future Circular Collider study

Goals	Continuation of conceptual study of baseline and remaining options with iterations between all technical areas during 2016 aiming at draft description of baseline with first cost model, identification of critical areas, cost drivers and performance limitations. A review of the status of the study and the corresponding baseline and options will be carried out in April 2016 at the FCC week to be held in Rome.
Achievements	Throughout 2016 the FCC collaboration continued to grow steadily and by the end of the year 98 institutes from 30 countries were active in FCC studies. In addition, 20 companies are already involved in the FCC study. The annual collaboration meeting held in Rome in April was attended by 470 participants from 168 institutes worldwide, confirming the support and wide-spread interest of the community. Following the FCC week in Rome, an optimised baseline for the overall layout of the FCC hadron collider with 97.75 km circumference was developed. Subsequently closed full-ring optics solutions for both hadron (FCC-h) and lepton (FCC-ee) colliders have been established for the new layout. The principle compatibility of the present designs with FCC physics goals was confirmed by beam dynamics and machine performance studies. Existing collaborations with PSI and EPFL have been enlarged in the important areas of beam dynamics and 16 T magnet development for FCC-h.h. For FCC-ee dedicated working groups, involving international experts, are now active in the critical areas of machine-detector-interface and energy calibration & polarisation. A working group focusing on the High-Energy LHC option, based on FCC-hh technology, has been established. First studies were focusing on requirements and compatibility of FCC-hh technology with LHC infrastructure, machine layout and integration aspects. Civil Engineering (CE) studies have progressed well with further optimisation of the tunnel location in the Geneva basin and the definition of layouts and dimensions for tunnels, shafts, caverns and surface buildings, based on integration studies on machines and detectors. Two consultant contracts have been placed to develop CE cost and schedule models as input for further optimisation work. On the technical infrastructure side baseline concepts for cooling & ventilation and cryogenics have been defined. The design and CERN has started. A world-wide effort to develop Nb3Sn wire with FCC specifications has been launched. This involves pu

28. Future Circular Collider study (cont.)

 Achievements
 For FCC-ee a baseline physic operation scenario with target luminosities from 88-370 GeV was defined. Detector studies are ongoing, exploiting synergies with linear collider detector activities.

 A common software framework for detector studies has been developed and is now being used for physics simulations based on benchmark processes.

 A socio-economic impact assessment study for HL-LHC and FCC has been launched.

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	30.1	39.4	43.6	145%	13.5	111%	4.3		
Personnel (kCHF)	4,880	6,345	7,765	159%	2,885	122%	1,420		
Materials (kCHF)	3,880	3,095	3,443	89%	-437	111%	348	672	
Total (kCHF)	8,760	9,440	11,208	128%	2,448	119%	1,768	672	

Scientific diversity activities

29. ELENA

Goals	Completion of the installation of the ELENA ring together with the lines required for commissioning (but not yet the transfer lines to the existing experiments) followed by commissioning of the ELENA ring. Most of the commissioning will be done with the help of an ion source providing 100 keV H- or protons in parallel to normal AD operation that provides antiprotons to the experiments; Towards completion of ELENA commissioning, some AD antiproton bunches will be used by ELENA for tests of setting-up of the nominal machine cycle. Depending on the availability of the electron cooler and progress of manufacture and installation of other components, two commissioning periods with and without cooler may take place. The target of ELENA commissioning is to gain a good understanding of the machine and confidence that the machine will run properly with antiprotons by the end of the 2016 run; such that the decision on the installation of the electrostatic transfer
Achievements	 lines from ELENA to the existing experiments, can be taken. The ELENA ring, except the electron cooler temporarily replaced by a simple chamber, has been installed by autumn. The installation suffered a delay due to several reasons such as the unavailability of vacuum chambers due to issues with the surface quality and Non-Evaporable Getter (NEG) coatings, an internal leak of the injection kicker tank and delays with the construction of profile monitors for the transfer lines. The elements under vacuum have been baked to reach the very low pressures required with the low beam energy followed by hardware tests of installed components. ELENA ring commissioning with H- beam from a dedicated ion source has started in November in parallel to AD operation for the experiments. Main achievements after the very successful first two weeks of commissioning with beam were: The beam from the external source was transported successfully to the ring and observed on a monitor between the injection septum and kicker. This milestone was difficult to achieve, as two profile monitors foreseen in this line were not available yet and could therefore not be used when steering the beam. A small intensity has been observed circulating for at least several tens of turns. This milestone has been reached by careful adjustments of the injection steering, without powering orbit corrector magnets. After two weeks, commissioning with beam had to be interrupted due to a technical problem with the source (broken isolation transformer). Together with the experiments and the CERN management, the decision has been taken to postpone to LS2 the installation of the transfer lines from ELENA to the existing experimental area. Most of the transfer line to the GBAR experiment was installed in 2016.
Comparison	

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	22.1	23.1	25.9	117%	3.8	112%	2.8		
Personnel (kCHF)	3,835	3,895	4,148	108%	313	106%	253		
Materials (kCHF)	9,655	7,870	5,978	62%	-3,677	76%	-1,892	1,940	
Total (kCHF)	13,490	11,765	10,125	75%	-3,365	86%	-1,640	1,940	

30. HIE-ISOLDE

In preparation for the 2016 physics run, the first cryomodule (CM1) was removed, vented and equipped with new radio-frequency (RF) input lines/couplers. It was installed back in the beam line along with the second cryomodule (CM2) in May 2016. The cool down of the two cryomodules was longer than expected, and highlighted limitations in the management of transients from the cryogenics plant; RF measurements at cold highlighted a degraded performance of two cavities (out of five) in CM1. All other cavities reached the nominal field of 6 MV/m. After the physics run, the RF performance of both underperforming CM1 cavities could be recovered up to 5.5 MV/m after conditioning with Helium processing; Beam commissioning activities at the REX normal conducting injector were performed simultaneously with hardware commissioning at HIE-linac. A mixture of belium, carbon, oxygen, neon and argon beams and with A/g = 4 was used for the set-up beam. The beam was transmitted	Goals	Installation and hardware commissioning of the second high-beta cryomodules (CM2) following delays in assembly of CM1 as announced in April 2014. Procurement, assembly and test of the remaining two high-beta cryomodules (CM3 and CM4). Physics with Radioactive Ion Beams @ 5.5 MeV/u.
	Achievements	In preparation for the 2016 physics run, the first cryomodule (CM1) was removed, vented and equipped with new radio-frequency (RF) input lines/couplers. It was installed back in the beam line along with the second cryomodule (CM2) in May 2016. The cool down of the two cryomodules was longer than expected, and highlighted limitations in the management of transients from the cryogenics plant; RF measurements at cold highlighted a degraded performance of two cavities (out of five) in CM1. All other cavities reached the nominal field of 6 MV/m. After the physics run, the RF performance of both underperforming CM1 cavities could be recovered up to 5.5 MV/m after conditioning with Helium processing; Beam commissioning activities at the REX normal conducting injector were performed simultaneously with hardware commissioning at HIE-linac. A mixture of helium, carbon, oxygen, neon and argon beams and with A/q = 4 was used for the set-up beam. The beam was transmitted through the cryomodules into the HEBT (High Energy Beam Transfer) lines with REX energy and was used to commission the diagnostic boxes. The superconducting cavities were phased, a process which also verified that the calibration of the gradients was accurate. The beam energy was measured using the first dipole of the first HEBT line, silicon detectors and a Time Of Flight (TOF) system. At the beginning of September, the first exotic beam marked the start of operations of HIE-ISOLDE Phase 1. Besides demonstrating the experimental capabilities of the facility, this successful first run validated the technical choices of the HIE-ISOLDE project. 6 radioactive ion beams and 3 stable beams were delivered to the two experimental beam lines between 4.3 and 6.8 MeV/u for a total of 837 hours of beam time (compared to 90 hours in 2015). All components for the remaining two high-beta cryomodules have been procured. The third cryomodule (CM3) has been assembled and

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (C)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	23.2	23.8	26.3	113%	3.1	111%	2.5		
Personnel (kCHF)	4,230	4,345	4,200	99%	-30	97%	-145		
Materials (kCHF)	5,800	4,960	2,985	51%	-2,815	60%	-1,975	513	
Total (kCHF)	10,030	9,305	7,185	72%	-2,845	77%	-2,120	513	

31. CERN Neutrino Platform

Goals	Finish the civil engineering construction of the EHN1 Nord area test beam extension. Continue the overhauling of the WA104 detector and make it ready for transport to the FNAL Short Baseline facility. Assist the WA105 Collaboration in the construction and operation of a first 3 m3 demonstrator of the two phases technology. Start the preparation of two large LAr TPC demonstrators for the Dune project in EHN1. Integrate the neutrino platform effort in the overall plans of the community for long and short baseline facilities in the USA. Provide CERN expertise in various domains in order to setup these international projects correctly. Prepare the in-kind contributions of CERN in these programs.
Achievements	EHN1 building completed and given to Physics. Installation of services infrastructure started (electricity, ventilation, network, metallic structures,). Construction of the NP02 and NP04 LNG type cryostats has started and is well advanced. Several key detector R&D studies done successfully and translated to detector components for the various detector prototypes under construction. NP02-WA105 detector demonstrator assembled and installed inside its new cryostat. Cryogenics installed and first operations started in view of cool down in early 2017. ICARUS detectors and cryostats in the final phase of construction. First vessel ready for the transport to FNAL. Second vessel will be ready in early 2017. All engineering and safety aspects of these large activities done and documented. MIND detector and new magnet 90% assembled and ready for test beams in late spring 2017. Continue to provide CERN expertise in various domains in order to correctly setups these international projects. Prepare the in-kind contributions of CERN in these programs. In particular the second version of the engineering of the large LBNF cryostats has started. It will be completed in 2017, before production can start.

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	13.5	13.3	12.6	93%	-0.9	95%	-0.7		
Personnel (kCHF)	2,235	2,150	1,988	89%	-247	92%	-162		
Materials (kCHF)	14,570	15,095	20,847	143%	6,277	138%	5,752	2,150	
Total (kCHF)	16,805	17,245	22,835	136%	6,030	132%	5,590	2,150	

32. Proton driven plasma wakefield acceleration

Goals	Installation of the AWAKE experiment, hardware and beam commissioning of the facility, first proton beam to the plasma cell. Start physics
Obais	run for self-modulation instability studies.
	Design, modification and component preparation of the electron source and electron beam-line.
	The installation of the AWAKE experiment for the self-modulation instability (phase 1) has been completed on schedule. The commissioning
	with SPS beam of the following elements was carried out successfully: the proton beam line, the laser and laser beam line, the proton and
	laser beam synchronisation system, the experimental diagnostics as well as the infrastructure services. The prototype rubidium vapour cell
	has been commissioned on surface and the entire 10 m long plasma cell system was installed and commissioned in the AWAKE facility.
Achievements	The safety clearance was released for the AWAKE experiment phase 1. The year 2016 ended with the first physics run and a major milestone
	was reached: the self-modulation of the SPS proton bunch in the plasma cell has been observed.
	Preparation activities for the next phase are ongoing: the integration of the electron source and beam line has been finalised, beam line
	equipment has been ordered, the PHIN electron source has been prepared for transport to AWAKE, the electron spectrometer system has
	been designed and its construction has started.
	Simulation studies related to AWAKE Run 2 (after Long Shutdown 2) have been performed to define the experimental setup. First studies
	on the long-term prospect of proton-driven plasma wakefield acceleration have started.

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (C)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	16.5	18.2	15.5	94%	-1.0	85%	-2.7		
Personnel (kCHF)	2,545	2,715	2,439	96%	-106	90%	-276		
Materials (kCHF)	6,345	8,935	7,617	120%	1,272	85%	-1,318	538	
Total (kCHF)	8,890	11,650	10,056	113%	1,166	86%	-1,594	538	

33. Superconducting RF studies

_		
	Goals	Cryolab cold-tests: test of existing 1.3 GHz cavities for surface treatment and diagnostics development. R&D on cavity fabrication and surface treatment of other cavities (BCP, EP, HiPIMS) at 400 MHz, 704 MHz and 802 MHz. Development of cold and warm diagnostics tooling (T-Map, OST, Optical inspection, field measurement). Upgrade of production and treatment facilities in building 252 (RF lab air condition, tuning bench, clean preparation, field flatness measurement). Upgrade of vertical and horizontal test cryostats in SM18 (including M7 cryogenic feed-box, clean preparation facility). Completion of string assembly of four 704 MHz 5-cell cavities with helium tanks and power couplers. Start of assembly of a 704 MHz 4-cavity cryomodule. Completion of 5 further 704 MHz cavities, using traditional construction techniques at CERN and using electro-hydraulic forming in collaboration with industry. In collaboration with JLAB, development and fabrication of an 802 MHz prototype cavity and cryomodule. R&D on "high-Q" technologies such as "N2 doping" or Nb3Sn coating on bulk Nb cavities. Study on optimised cool-down schemes. High-power tests of 3 rd generation 704 MHz power couplers. Test of MW-class IOTs at CERN in collaboration with ESS.
	Achievements	Thirteen 1.3 GHz monocell cavities were coated with different techniques (HiPIMS and DCMS). The best 6 of these were successfully tested in the Cryolab. Ten more cavities were received, which still must be equipped with cut-off pipes (on order). Half-cells both at 400 MHz and at 704 MHz were formed successfully with electro-hydroforming, a promising new technology. Seamless cavities at 100 MHz (for HIE-ISOLDE) were fabricated with industry, at 400 MHz and at 800 MHz in collaboration with INFN/LNL (Legnaro). The vertical EP (electro-polishing) was developed and optimized for 704 MHz; several tests (about 6) were performed with varying parameters to further optimise the HiPIMS (High Power Impuse Magnetron Sputtering) method. One Nb cavity was coated with Nb at CERN and shipped to FNAL for complementary tests there. The development of contactless temperature sensors (T-sensors) was started and made good progress towards reliable T-mapping. OST (Oscillating Superleak Transducer) sensors have been successfully applied for both 704 MHz and 400 MHz cavities in the upgraded V3 cryostat. The clean-room facilities in SM18, required initially for the HL-LHC crab cavities, were upgraded and modernized as priority, the upgrade of the facilities in SM18 (4 vertical cryostas and 2 bunkers) were upgraded by new inserts for test of 704 MHz 5-cell cavities and 400 MHz cavities (both crab cavities and accelerating cavities). A new cryogenic valve box was specified and ordered for installation in 2017. The string assembly of four 704-MHz cavities was postponed; the cryoomodule (CM) vacuum vessel was received and qualified, the magnetic shielding was redesigned correcting a design flaw. Due to other priorities (HL-LHC, HIE-ISOLDE and LHC spare cavities), the CM assembly is presently planned for 2018. A 3 rd 704 MHz cavity (out of 4) was electropolished in an optimised vertical EP set-up.

33. Superconducting RF studies (cont.)

	Production of 802 MHz single cell plus five cell cavity is started at JLAB; the definition of the cut-off tube configuration is progressing. The collaboration with FNAL on high-Q techniques was strengthened and formalised, one bulk Nb cavity was Nb-coated at CERN and sent to FNAL for complementary tests. About 100 samples for A15 Nb ₃ Sn and V ₃ Sn (crystalline structure common to a family of high-temperature superconductors) were prepared in about 30 coating runs, the 16 best samples were tested at UNIGE to confirm their performance	
	(successfully).	
	The influence of cool-down speed and temperature gradient during cool-down were studied complementing the work at our partner labs - it	
	was found that the optimum is different for bulk Nb cavities and Nb-coated cavities.	
	Three power couplers are fully completed, a fourth awaits electron-beam welding. Two further 3 rd generation FPCs (Fundamental Power	
	Coupler) are under construction. Preparing for the high-power FPC tests, a 704 MHz resonant ring study has been launched and a special	
	WR2300 10-dB coupler has been design and constructed. A first attempt has shown matching difficulties, and configuration of the resonant	
	ring will have to be modified; this activity is now on hold due to other priorities.	
	A test bench dedicated to the ESS IOTs has been designed and its construction completed; commissioning is ongoing. Two different industrial	
	tubes are expected to be delivered by spring 2017.	

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	8.4	8.7	8.8	105%	0.4	101%	0.1		
Personnel (kCHF)	1,300	1,315	1,258	97%	-42	96%	-57		
Materials (kCHF)	3,170	4,915	2,233	70%	-937	45%	-2,682	888	
Total (kCHF)	4,470	6,230	3,492	78%	-978	56%	-2,738	888	

34. Superconducting magnet R&D (SCM)

Comparison Final 2016	Final 2016	2016	2016	Budget usage	Budget	Revised Bud.	Revised Bud.	2016	
Achievements	The infra was reloc now used treatment field sole are now i and test v In the SM in Cluster LHC qua and futur The FRE CEA (Col and the ta Canted-c orbit corru An HTS (in SM-18 CERN-bu	structure rec cated to make d for research t ovens were noids were in productio volume for h 1-18, a new r D. The HF drupole mod e high field SCA2 magr mmissariat arget operate osinus theta ector dipole High Tempe) to perform uilt HTS mag	brganisation a space for ch and deve e installed ar ordered to fit n at an indu high field sup 30 kA power M (High Fie del was teste magnets. net was asse à l'Energie A cional field sh a magnet des s to be used erature Supe n characteris gnet demons	a sample pre lopment – 10 d are ready f the present strial manufa erconductors converter wa d Magnet) te d while comr embled in 20 tomique), wh nould be reac signs were ex- for HL-LHC. rconductor) v ation tests or strator, in adv	conductors paration ar or operation test station cturer. The sas success st station of nissioning 16 and is r ich include hed with lin cplored, an variable ter n a small-s vance and	rea for the e field) and t on. In prepa is (two 15 T ese solenoid fully powere of SM-18 wa the test star ready for test es spares fo mited trainir id in particul mperature te size HTS ins support of t	xisting FRES he future FF ration of the 70 mm bord ls, which sh ed (in short c as commiss ion, as a va it (training) i r long term of g. ar as an opt est bed was isert. This pro- he EuCARE	SCA (Facility RESCA2 (15 upgrade to re two 16 T 7 ould be ope sircuit mode) ioned for op lidation. This peration as ion of easier installed in a pof-of-princip 2 model dip	arding to the upgrade scenario: the control room y for the REception of Superconducting CAbles, of target field) test stations and additional heat ultra-high fields (test bed at 18 T or higher) high 70 mm bore, two 15 T 100 mm large bore), and arational in 2017, will increase the test capacity b, to be fully commissioned in 2017 for operation eration at 20 kA and 1.9 K. An inner triplet HL- s new test station is foreseen to host FRESCA2 is magnet has been built with coils delivered by a test station. The coil design has large margin r manufacturing, and possibly lower cost for the an existing test cryostat ("diode" vertical cryostat ple experiment allowed early testing of the first pole construction. The results achieved confirm ched down to 20 K with no training quench.
Goals	Set-up te	st facility for	r very high c	ty for superco urrent 'HFM'	(30 kA).	suanus up to) 10 1.		

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (c)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)		2.0	3.0		3.0	151%	1.0		
Personnel (kCHF)		405	622		622	154%	217		
Materials (kCHF)	1,475	4,805	2,566	174%	1,091	53%	-2,239	319	
Total (kCHF)	1,475	5,210	3,188	216%	1,713	61%	-2,022	319	

35. R&D for medical applications

	 To ob 	tain funding	for OpenMI	ED (bio-LEIF	R) and start	construction).		
	 Assur 	ning that the	funding is	allocated for	the D3LVE	project (EC	proposal), t	to manage tl	nis project and produce the deliverables.
Goals	 To co 	mplete the N	IEDICIS pro	oject and pre	pare for the	e first produc	ction of radio	o-isotopes in	2017.
	 To co 	ntinue the R	&D for impr	oved medica	al imaging a	nd diagnost	ic technique	s, including	dosimetry and medical simulations.
	 With t 	he new gove	ernance of r	nedical appli	ications agr	eed by the (CERN Coun	cil, to compl	ete the creation of the "collaboration board".
		•			•				cal Applications responsibility.
				re-organised	<u> </u>				
			•	•		•			before seeking external funds and setting up a
				r distribution				5 1 1	<u> </u>
							Virtual Envir	onment) pro	ject was not funded, a resubmission in the near
	future is p			•	•	0		, 1	·
			DICIS proje	ct, the remot	e handling s	systems, the	target Fron	t-End and th	e separator magnet have been completed, and
				bry and bean					
									dipix, computing and software tools continued,
									ncer therapy.
	In particul	lar, studies a	about the po	ossible adva	ntages of ra	adioactive b	eams (11-C	, 15-O) for h	nadrontherapy were carried out. These studies
	include: d	ata taking ir	i Japan, the	e developme	nt of integra	ated tools fo	or the autom	natic genera	tion of patient geometry, material descriptions,
				ng treatment					
Achievemente	There we	re improvem	ents in the i	nuclear intera	action mode	els for light id	ons at energ	ies of releva	ance for hadrontherapy, with particular attention
Achievements									articular for the new features essential for the
		ic exploitatio							
	In the fran	nework of th	e search fo	or additional	funding, fol	lowing the C	CERN-EC a	nnual meetii	ng in Brussels in October 2016, CERN sent its
	input to th	e Commissi	on in terms	of topics of	interest for	EU-funded	projects and	calls. A CE	RN & Society project to support ENLIGHT was
	submitted			-		-	-		
	The ICTF	R-PHE confe	erence <u>http</u>	://cerncourie	r.com/cws/a	article/cern/6	64366 broug	ght together	over 450 participants from 33 countries, and
	featured 1	65 presenta	tion and ov	er 100 poste	ers. For the	first time, th	e industrial	exhibition fe	atured an innovation corner dedicated to start-
									the Medical Applications International Strategy
	Committe	e (ISC), on t	he needs o	f the medica	l field, with	around 80 p	participants	(mostly exte	rnal experts). The conclusions were presented
				oplications S					
									6573. For the first time, the meeting included a
				scientists. Th					
	A worksh	op on Desig	gn Characte	eristics of a	Novel Line	ear Accelera	ator for Cha	allenging En	vironments was held at CERN, with over 70
	participan	ts.							
Comparison									
Final 2016	Final 2016	2016	2016	Budget usage	Budget	Revised Bud.	Revised Bud.	2016	
Budget	Budget	Revised Bud.	Out-Turn	in %	variation	usage in %	Variation	Open	Comments
and 2016 Out- Turn (2016 prices)	(a)	(b)	(c)	(c)/(a)	(c)-(a)	(c)/(b)	(c)-(b)	Commitment	
Personnel (FTE)	10.9	12.7	16.1	148%	5.2	127%	3.4		
Personnel (kCHF)	1,795	1,955	2,557	142%	762	131%	602		
Materials (kCHF)	4,100	3,030	2,031	50%	-2,069	67%	-999	357	
Total (kCHF)	5,895	4,985	4,588	78%	-1,307	92%	-397	357	

36. Other R&D

This heading combines all other R&D activities like some limited funding for technology R&D and anticipated continued support from EU projects in the future. Existing EU projects are reported under the various activities concerned and below. This heading also includes some funding for the study of the technical feasibility of a beam dump facility at CERN, in the framework of the "Physics Beyond Colliders" Study Group. Furthermore, CERN's support to other organisations such as FAIR, ITER, ESS, etc., for which some partial external funding exists are grouped under this heading. Personnel detached to and working on this external support compromises the available workforce for CERN's core activities.

36a. EU supported computing R&D

Goals	Expect to participate in several H2020 proposals, notably concerning the pre-procurement of commercial cloud services that, if successful, will start in 2015.
	 During 2016 CERN has participated as a partner in the submission of multiple H2020 proposals. From these proposals, 2 were funded and will start in 2017: Up to University - Bridging the gap between schools and universities through informal education (starts January 2017), AARC2 – Authentication and Authorisation For Research and Collaboration - a continuation of the AARC project (starts May 2017). Coordinator for the following FP7 projects: ICE-DIP: Intel – CERN Industrial Doctorate Programme. This project is funded under the Marie Curie programme and provides an example of how public-private partnerships can contribute to training the next generation of highly qualified ICT specialists to take on leading roles in European research and industry.
Achievements	 Coordinator for the following H2020 projects: PICSE - Procurement Innovation for Cloud Services in Europe (successfully completed in April 2016), HNSciCloud – Pre Commercial Procurement pilot for the introduction of commercial IaaS cloud services in the public research sector. Partner in the following H2020 projects: OpenAIRE2020, EGI-ENGAGE, EUDAT2020, INDIGO-DataCloud, AARC.
	 Active contribution to the EC-cofunded Research Data Alliance (RDA) including co-chairs of interest groups and representation of EIROforum as IT Working Group as Organizational Member and participation in the RDA EU Synchronisation Assembly. Together with the RDA Interest Group on Active Data Management plans, an international and inter-disciplinary workshop was held at CERN in June. As input for the pilot European Open Science Cloud, a project funded under call INFRADEV-4-2016 CERN has published a document "The European Open Science Cloud Pilot Phase", <u>https://doi.org/10.5281/zenodo.50072.</u> CERN responded to the Consultation on Cloud Computing Research Innovation Challenges for WP 2018-2020 by publishing an input paper: <u>https://doi.org/10.5281/zenodo.160709.</u>
	 EC nominated reviewer for GreenDataNet project. Member of the e-infrastructures external advisory board for the CORBEL project.

36a. EU supported computing R&D (cont.)

	•	CERN-IT personnel have participated at the following events organised by the EC:
	C	Make presentation at the 3 rd annual concertation meeting of on-going PCP projects (Brussels, 10 March 2016),
Achievements	C	Make presentation at the conference on open science organised by Dutch presidency of the EU (Amsterdam, 5 April 2016),
Acinevements	C	Make presentation at the JRC science lecture (Brussels, 26 May 2016),
		Participate in the ICT Proposers Day 2016 (Bratislava, 26 September 2016) Make presentation at the Post Consultation work

- Participate in the ICT Proposers Day 2016 (Bratislava, 26 September 2016), Make presentation at the Post Consultation workshop on Cloud Computing Research Innovation Challenges for WP 2018-2020 (Brussels, 7 November 2016),
- Make presentation at the EC open science policy platform meeting (Brussels, 9 December 2016).

Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (C)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	6.6	10.8	7.4	114%	0.9	69%	-3.4		
Personnel (kCHF)	1,175	1,875	998	85%	-177	53%	-877		
Materials (kCHF)	85	2,560	182	215%	97	7%	-2,378		
Total (kCHF)	1,260	4,435	1,181	94%	-79	27%	-3,254		

36b. Support to FAIR, ITER, ESS (with corresponding revenues)

Goals	NA.								
Achievements	cold box, (Civil eng be install and com ITER: In 2016 (agreeme magnet s ESS:	, cryo valves gineering, oil ed in 2017. missioned. T activities fo ent 14), as w systems (Ag	, dewar, dis containmer Cabling wa The test stat r ITER mai ell as Desig reement 16)	tribution syst nt, piping, con s done, and ion will be rea nly included n, developme	tem) was d ntrols, vent power com ady for han Consultan ent & manu	elivered and ilation, safet verters, ene dover to GS cy for mate facturing of	d commission ty). The mag rgy extraction of in June 20 erials for va the HTS (Hig	oned, includi gnet test plat on systems, 117. rious work gh Tempera	nain equipment for the cryogenics (compressor, ng a full renovation of the compressor building tforms are partly installed, the towers remain to demineralised water distribution were installed items & Destructive & Non-Destructive Tests ture Superconductor) current leads for the ITER IOTs at CERN, are provided in fact sheet n.33.
Comparison Final 2016 Budget and 2016 Out- Turn (2016 prices)	Final 2016 Budget (a)	2016 Revised Bud. (b)	2016 Out-Turn (C)	Budget usage in % (c)/(a)	Budget variation (c)-(a)	Revised Bud. usage in % (c)/(b)	Revised Bud. Variation (c)-(b)	2016 Open Commitment	Comments
Personnel (FTE)	20.8	22.7	24.8	119%	4.0	109%	2.1		
Personnel (kCHF)	3,565	3,925	3,718	104%	153	95%	-207		
Materials (kCHF)	11,545	9,740	7,533	65%	-4,012	77%	-2,207	699	
Total (kCHF)	15,110	13,665	11,251	74%	-3,859	82%	-2,414	699	

2. FINANCIAL FIGURES

2.1. EXPERIMENTS (CERN'S CONTRIBUTION TO THE COLLABORATIONS AND EXPERIMENTS ON SITE) AND ACCELERATORS

Figure 5: Scientific Programme

Final	2016 Budge		C/5955	Revised	d 2016 Budg		FC/6011			2016 0	Out-Turn - Cl		6/Rev.	Re	vised 2016 E	ludget usa	ge	2016
	(2016 p	prices)			(2016	prices)			Activity		(2016 p	orices)			in '			Out-Turn
					(8	a)					(b)			(b)/(a)		Open Commitment
FTE		kCHF		FTE		kCHF		Fact		FTE		kCHF		FTE		kCHF		kCHF
Personne	Personnel	Materials	Total	Personnel	Personnel	Materials	Total	sheet		Personnel	Personnel	Materials	Total	Personnel	Personnel	Materials	Total	Materials
844.4	155 650	127 190	282 840	844.3	154 720	106 065	260 785		LHC programme	896.4	160 144	99 790	259 933	106%	104%	94%	100%	10 444
339.2	59 055	51 425	110 480	327.9	56 610	49 590	106 200	1	LHC machine	345.3	58 533	41 768	100 301	105%	103%	84%	94%	4 520
339.2	59 055	44 035	103 090	327.9	56 610	42 940	99 550		LHC machine and experimental areas	341.5	57 864	36 976	94 840	104%	102%	86%	95%	3 894
		7 390	7 390			6 650	6 650		Spares	3.7	669	4 792	5 461			72%	82%	626
65.9	11 030	37 515	48 545	74.3	12 400	21 500	33 900	1	LHC machine and areas: reliability and consolidation	82.9	13 119	22 683	35 803	112%	106%	106%	106%	4 674
329.9	62 765	13 185	75 950	331.1	62 805	12 940	75 745		LHC experiments	351.0	64 597	12 184	76 781	106%	103%	94%	101%	498
78.7	15 375	3 335	18 710	80.4	15 555	3 335	18 890	2	ATLAS detector	92.8	16 515	3 527	20 042	115%	106%	106%	106%	103
107.6	20 365	3 895	24 260	107.8	20 365	3 850	24 215	3	CMS detector	120.0	22 352	3 595	25 947	111%	110%	93%	107%	145
50.9	9 740	1 770	11 510	50.3	9 610	1 680	11 290	4	ALICE detector	57.3	10 894	1 826	12 720	114%	113%	109%	113%	0
49.2	10 180	1 495	11 675	49.2	10 180	1 420	11 600	5	LHCb detector	48.3	9 222	2 117	11 338	98%	91%	149%	98%	16
43.5	7 105	2 690	9 795	43.4	7 095	2 655	9 750	6	Common items, other experiments*	32.6	5 615	1 120	6 734	75%	79%	42%	69%	233
109.5	22 800	25 065	47 865	111.0	22 905	22 035	44 940	8	LHC computing	117.2	23 894	23 154	47 048	106%	104%	105%	105%	753
709.6	129 050	94 765	223 815	723	130 940	97 275	228 215		Other programmes	680	122 669	77 069	199 738	94%	94%	79%	88%	13 541
23.7	4 390	2 165	6 555	25.9	4 800	1 800	6 600	9	Non-LHC physics (experimental programme)	29.4	5 011	1 811	6 822	114%	104%	101%	103%	103
65.8	10 250	1 470	11 720	65.1	10 305	1 645	11 950	10	Theory	62.0	9 635	1 548	11 183	95%	93%	94%	94%	31
18.1	3 470	3 520	6 990	19.2	3 385	4 455	7 840	11	Knowledge transfer	18.0	2 816	3 128	5 944	94%	83%	70%	76%	111
184.6	34 365	23 780	58 145	191.2	35 230	21 690	56 920	12	Scientific support**	148.1	26 599	17 680	44 279	77%	76%	82%	78%	2 631
36.7	6 835	2 540	9 375	37.2	6 945	3 160	10 105	13	Low- and medium-energy accelerators	39.1	7 330	2 875	10 205	105%	106%	91%	101%	339
199.4	34 120	19 890	54 010	196.3	33 555	20 450	54 005	13	PS and SPS complexes	190.7	33 220	18 450	51 670	97%	99%	90%	96%	2 064
173.4	34 400	33 355	67 755	180.1	35 515	39 700	75 215	13	Accelerator maintenance and consolidation	185.7	36 856	28 140	64 996	103%	104%	71%	86%	7 485
8.0	1 220	8 045	9 265	7.7	1 205	4 375	5 580	13	Consolidation of experimental areas	6.5	1 202	3 438	4 639	85%	100%	79%	83%	778
1 554.0	284 700	221 955	506 655	1 567	285 660	203 340	489 000		Grand Total	1 576	282 813	176 858	459 671	101%	99%	87%	94%	23 985
	23.19%	18.08%	41.27%		23.17%	16.49%	39.66%		% of total revenues		22.84%	14.29%	37.13%					

* Including: Totem, LHCf, MoEDAL

** Including: associates, computing, R&D detectors, technical support

2.2. NON-SCIENTIFIC PROGRAMME (INFRASTRUCTURE AND SUPPORT SERVICES)

Figure 6: Infrastructure, services and centralised expenses

Final	2016 Budge (2016		/5955	Revise	d 2016 Budg (2016)		C/6011		Activity	2016 (Out-Turn - C (2016)		6/Rev.	Re	evised 2016 I in		ge	2016 Out-Turn
	(2010)	5110003)			(20104)	· · ·			Activity))			(b)/			Open Commitment
FTE		kCHF		FTE	(-	kCHF		Fact		FTE		kCHF		FTE	(3)	kCHF		kCHF
	Personnel	Materials	Total		Personnel	Materials	Total	sheet			Personnel	Materials	Total		Personnel		Total	Materials
951.7	245 980	227 745	473 725	1 000	254 375	228 735	483 110		Infrastructure, services and centralised expenses	1 032	257 577	205 998	463 575	103%	101%	90%	96%	11 468
54.9	9 185	3 880	13 065	56.2	9 300	2 385	11 685	14	Manufacturing facilities (workshops, etc.)	59.9	9 420	2 716	12 137	107%	101%	114%	104%	-6 559
205.5	36 300	38 860	75 160	206.6	36 060	40 380	76 440	15	General facilities & logistics (site maintenance, transport)	204.3	34 934	39 401	74 335	99%	97%	98%	97%	1 800
180.7	32 100	25 110	57 210	193.2	33 220	24 655	57 875	16	Informatics	195.3	34 568	22 741	57 309	101%	104%	92%	99%	3 677
154.7	23 865	16 085	39 950	169.3	26 380	17 030	43 410	17	Safety, health and environment	168.1	27 552	12 491	40 043	99%	104%	73%	92%	1 935
206.8	38 755	14 660	53 415	199.6	37 625	17 500	55 125	18	Administration*	212.6	36 363	8 998	45 362	107%	97%	51%	82%	354
46.0	7 825	2 910	10 735	63.2	11 085	6 625	17 710	19	International relations	63.8	11 731	5 374	17 105	101%	106%	81%	97%	560
18.7	2 930	28 120	31 050	16.8	2 585	36 950	39 535	20	Infrastructure consolidation, buildings and renovation	20.3	3 084	29 227	32 311	121%	119%	79%	82%	9 673
84.4	95 020	98 120	193 140	95.2	98 120	83 210	181 330	21	Centralised expenses	107.9	99 924	85 050	184 974	113%	102%	102%	102%	28
	35 705		35 705		36 335		36 335		Centralised personnel expenses		36 079		36 079		99%		99%	3
	28 545		28 545		30 045		30 045		Internal taxation		31 451		31 451		105%		105%	
3.3	1 745		1 745	3.5	1 470		1 470		Internal mobility and personnel on detachment	3.1	801	53	855	88%	55%		58%	
									Personnel paid but not available	20.7	2 482		2 482					
81.2	11 695		11 695	91.7	12 940		12 940		Personnel paid from team accounts	84.1	11 783		11 783	92%	91%		91%	
	17 330		17 330		17 330		17 330		Budget amortisation of staff benefit accruals		17 328		17 328		100%		100%	
		76 040	76 040			63 985	63 985		Energy and water			60 405	60 405			94%	94%	24
		6 240	6 240			6 240	6 240		Insurance, postal charges, miscellaneous			5 028	5 028			81%	81%	0
		10 940	10 940			10 940	10 940		Interest, bank and financial expenses			17 700	17 700			162%	162%	0
		4 900	4 900			2 045	2 045		In-kind			1 863	1 863			91%	91%	
	20.04%	18.55%	38.59%		20.63%	18.55%	39.18%		% of total revenues		20.81%	16.64%	37.44%					

* The Out-Turn number includes the apprentices (19 FTEs) that are not budgeted for (as of August 2016 all new appointed apprentices are classed as associate members of the personnel in the Materials expenses).

2.3. PROJECTS (CONSTRUCTION, R&D)

Figure 7: Projects

Final	2016 Budge (2016 p		/5955	Revise	d 2016 Budg (2016)	prices)	C/6011		Activity	2016 (Dut-Turn - Cl (2016 p	prices)	6/Rev.	Re	vised 2016 E	%	ge	2016 Out-Turn
	1				3)	a)			1		(t				(b)/(. ,		Open Commitment
FTE		kCHF		FTE		kCHF		Fact		FTE		kCHF		FTE		kCHF		kCHF
Personnel	Personnel	Materials	Total	Personnel	Personnel	Materials	Total	sheet		Personnel	Personnel	Materials	Total	Personnel	Personnel	Materials	Total	Materials
569.1	99 570	156 085	255 655	593.4	102 305	129 160	231 465		Projects	623.3	106 817	123 133	229 950	105%	104%	95%	99%	33 856
345.3	60 995	80 620	141 615	349.2	61 220	51 195	112 415		LHC upgrades	370.8	65 621	57 047	122 669	106%	107%	111%	109%	22 889
17.0	3 095	1 770	4 865	18.3	3 315	2 270	5 585	22	LINAC4	19.6	3 145	2 172	5 318	107%	95%	96%	95%	201
112.4	18 380	27 115	45 495	114.9	18 480	17 940	36 420	23	LHC injectors upgrade	118.2	19 240	17 819	37 059	103%	104%	99%	102%	8 120
144.3	25 015	37 855	62 870	145.4	25 045	22 250	47 295	24	HL-LHC construction	164.5	27 690	28 421	56 111	113%	111%	128%	119%	13 066
45.2	10 270	9 380	19 650	45.2	10 270	5 430	15 700	25	LHC detectors upgrade (phase 1) and consolidation	49.3	11 743	5 409	17 152	109%	114%	100%	109%	944
26.3	4 235	4 500	8 735	25.3	4 110	3 305	7 415	25	HL-LHC detectors, including R&D (phase 2)	19.3	3 802	3 226	7 029	76%	93%	98%	95%	557
101.9	17 895	18 720	36 615	108.9	18 505	16 055	34 560		Energy frontier	112.1	19 266	14 115	33 381	103%	104%	88%	97%	3 563
71.8	13 015	14 840	27 855	69.5	12 160	12 960	25 120	26,27	Linear collider studies (CLIC, ILC, detector R&D)	68.5	11 501	10 672	22 173	99%	95%	82%	88%	2 890
30.1	4 880	3 880	8 760	39.4	6 345	3 095	9 440	28	Future Circular Collider study	43.6	7 765	3 443	11 208	111%	122%	111%	119%	672
121.9	20 680	56 745	77 425	135.3	22 580	61 910	84 490		Scientific diversity activities	140.4	21 930	51 971	73 901	104%	97%	84%	87%	7 404
22.1	3 835	9 655	13 490	23.1	3 895	7 870	11 765	29	ELENA	25.9	4 148	5 978	10 125	112%	106%	76%	86%	1 940
23.2	4 230	5 800	10 030	23.8	4 345	4 960	9 305	30	HIE-ISOLDE	26.3	4 200	2 985	7 185	111%	97%	60%	77%	513
13.5	2 235	14 570	16 805	13.3	2 150	15 095	17 245	31	CERN Neutrino Platform	12.6	1 988	20 847	22 835	95%	92%	138%	132%	2 150
16.5	2 545	6 345	8 890	18.2	2 715	8 935	11 650	32	Proton-driven plasma wakefield acceleration	15.5	2 439	7 617	10 056	85%	90%	85%	86%	538
8.4	1 300	3 170	4 470	8.7	1 315	4 915	6 230	33	Superconducting RF studies	8.8	1 258	2 233	3 492	101%	96%	45%	56%	888
		1 475	1 475	2.0	405	4 805	5 210	34	Superconducting magnet R&D (SCM)	3.0	622	2 566	3 188	151%	154%	53%	61%	319
10.9	1 795	4 100	5 895	12.7	1 955	3 030	4 985	35	R&D for medical applications	16.1	2 557	2 031	4 588	127%	131%	67%	92%	357
27.3	4 740	11 630	16 370	33.5	5 800	12 300	18 100	36	Other R&D (FAIR, ITER, ESS, EU, etc.)	32.2	4 717	7 715	12 432	96%	81%	63%	69%	699
	8.11%	12.72%	20.83%		8.30%	10.47%	18.77%		% of total revenues		8.63%	9.95%	18.57%					

2.4. MULTI-ANNUAL PROJECTS

Figure 8 (1/3): Expenses – Details of projects included in the activity headings

(in kCHF, rounded off)

	al 2016 Budg ERN/FC/5955		с	sed 2016 Bud ERN/FC/601		D	Period	CEF	016 Out-Turn RN/FC/6096/R		Revised 2	2016 Budge in %	et usage	Variation of 201 respect to Revis	
	(2016 prices)			(2016 prices) (a)		Programme	Project		(2016 prices) (b)			(b)/(a)		(c) = (b)-(a)	(d) = (c)/(a)
Personnel	Materials	Total	Personnel	Materials	Total			Personnel	Materials	Total	Personnel	Materials	Total	kCHF	%
15 660	66 040	81 700	17 395	46 860	64 255		LHC programme	19 370	46 625	65 995	111%	99%	103%	1 740	3%
	6 280	6 280		5 790	5 790		LHC machine and experimental areas	670	3 720	4 390		64%	76%	-1 400	-24%
	5 275	5 275		4 705	4 705		LHC spares	670	2 845	3 515		60%	75%	-1 190	-25%
	1 005	1 005		995	995		LHC magnet repair		855	855		86%	86%	-140	-14%
				90	90		Electrical Circuit Change for ALFA		20	20		22%	22%	-70	-78%
11 030	37 650	48 680	12 370	21 485	33 855		LHC machine and areas reliability and consolidation	13 055	22 690	35 745	106%	106%	106%	1 890	6%
170	2 180	2 350	960	855	1 815		Collimation system enhancements	1 145	925	2 070	119%	108%	114%	255	14%
505	5 760	6 265	365	1 205	1 570		Electrical network 2025	860	1 005	1 865	236%	83%	119%	295	19%
380	840	1 220	380	740	1 120		Experimental areas consolidation	345	325	670	91%	44%	60%	-450	-40%
7 320	19 385	26 705	7 990	11 085	19 075	LHC programme	LHC consolidation	7 480	13 800	21 280	94%	124%	112%	2 205	12%
2 655	9 225	11 880	2 675	6 520	9 195	Included in Figure 5	Radiation to electronics (R2E)	3 225	5 180	8 405	121%	79%	91%	-790	-9%
							POPS repair, spare and consolidation		1 065	1 065				1 065	
				815	815		Spare and consolidation in the framework of HL-LHC		65	65		8%	8%	-750	-92%
	260	260		265	265		CERN control centre consolidation		325	325		123%	123%	60	23%
	-5	-5		20	20		LHC detectors		65	65		325%	325%	45	225%
50	135	185					LHC injectors								
1 715	20 830	22 545	1 820	18 195	20 015		LHC Computing Grid	2 115	19 345	21 460	116%	106%	107%	1 445	7%
2 865	1 150	4 015	3 205	1 370	4 575		EU projects	3 530	795	4 325	110%	58%	95%	-250	-5%
							TT projects		10	10				10	
18 005	33 980	51 985	18 865	39 115	57 980		Other programmes	17 945	24 285	42 230	95%	62%	73%	-15 750	-27%
350	135	485	350	245	595		AEGIS	375	230	605	107%	94%	102%	10	2%
1 075	570	1 645	1 105	170	1 275		NA62	1 085	60	1 145	98%	35%	90%	-130	-10%
	535	535		905	905		PCB Workshop Machine		5	5		1%	1%	-900	-99%
50	15	65	50	15	65		ISOLDE robots	70	15	85	140%	100%	131%	20	31%
50	445	495	50	380	430		Magnet Infrastructure Upgrade	-5	105	100	-10%	28%	23%	-330	-77%
1 990	2 070	4 060	1 985	4 585	6 570		SM18 infrastructure Upgrade	1 800	3 770	5 570	91%	82%	85%	-1 000	-15%
135	1 345	1 480	135	2 355	2 490		TE Infrastructure Consolidation	220	2 305	2 525	163%	98%	101%	35	1%
	830	830		830	830		EP Safety and Consolidation		-340	-340		-41%	-41%	-1 170	-141%
			50	170	220		LHC injectors	100		100	200%		45%	-120	-55%
185	445	630	105	475	580		Timing development	180	165	345	171%	35%	59%	-235	-41%
385	3 700	4 085	475	1 855	2 330	Included in Figure 5	AD consolidation	470	1 635	2 105	99%	88%	90%	-225	-10%
35	780	815	35	280	315		East area consolidation	25	205	230	71%	73%	73%	-85	-27%
805	3 565	4 370	700	2 245	2 945		North area consolidation	705	1 525	2 230	101%	68%	76%	-715	-24%
70	1 485	1 555	70	350	420		66/18 kV loop PS consolidation	-20	600	580	-29%	171%	138%	160	38%
670	1 365	2 035	720	1 525	2 245		18 kV loop + substations SPS consolidation	750	865	1 615	104%	57%	72%	-630	-28%
7 900	14 970	22 870	7 985	16 410	24 395		Accelerator consolidation	7 815	9 615	17 430	98%	59%	71%	-6 965	-29%
245	915	1 160	245	1 565	1 810		PS and SPS spares	240	600	840	98%	38%	46%	-970	-54%
							Computer Security Hardening	15	145	160				160	
4 060	810	4 870	4 685	1 435	6 120		EU projects	3 795	660	4 455	81%	46%	73%	-1 665	-27%
			120	3 320	3 440		TT projects	325	2 120	2 445	271%	64%	71%	-995	-29%

c	al 2016 Budg ERN/FC/5955 (2016 prices)		c	sed 2016 Bud CERN/FC/6011 (2016 prices)		Programme	Project	CEF	016 Out-Turn RN/FC/6096/Re (2016 prices)		Revised	2016 Budge in %	et usage	Variation of 201 respect to Revis	ed 2016 Budge
	(2016 prices)			(a)					(b)			(b)/(a)		(c) = (b)-(a)	(d) = (c)/(a)
Personnel	Materials	Total	Personnel	Materials	Total			Personnel	Materials	Total	Personnel	Materials	Total	kCHF	%
8,495	55,285	63,780	8,965	63,315	72,280		Infrastructure, services and centralised expenses	9,805	47,815	57,620	109%	76%	80%	-14,660	-20%
	1,295	1,295		1,415	1,415		Manufacturing facilities		1,280	1,280		90%	90%	-135	-10%
	1,295	1,295		1,415	1,415		Investment in new mechanical technologies		1,280	1,280		90%	90%	-135	-10%
	2,740	2,740		1,465	1,465		General facilities & logistics (site maintenance, transport)	15	85	100		6%	7%	-1,365	-93%
	1,560	1,560		300	300		Globe car park and "Esplanade des Particules"	15	15	30		5%	10%	-270	-90%
	1,180	1,180		1,165	1,165		Building 38 (hotel renovation)		70	70		6%	6%	-1,095	-94%
2,215	10,750	12,965	2,370	10,930	13,300		Informatics	2,350	8,645	10,995	99%	79%	83%	-2,305	-17%
	3,355	3,355		2,420	2,420		Computing network consolidation		1,705	1,705		70%	70%	-715	-30%
	485	485		1,065	1,065		2nd Network Hub		550	550		52%	52%	-515	-48%
	5,880	5,880		6,755	6,755		SCOAP3		5,420	5,420		80%	80%	-1,335	-20%
2,215	465	2,680	2,190	495	2,685		OpenLab	2,165	855	3,020	99%	173%	112%	335	129
	565	565	180	195	375		AIS re-engineering	185	115	300	103%	59%	80%	-75	-20%
605	-30	575	110	590	700		Administration	120	255	375	109%	43%	54%	-325	-46%
	-5	-5		140	140		HR projects	5	25	30		18%	21%	-110	-79%
605	-20	585	110	360	470		FAP projects	115	150	265	105%	42%	56%	-205	-44%
	-5	-5		90	90		Risk management		80	80		89%	89%	-10	-11%
1,500	9,515	11,015	2,685	10,120	12,805		Safety, health and environment	2,840	5,930	8,770	106%	59%	68%	-4,035	-325
	555	555		585	585		Radio infrastructure upgrade for firefighters	50	35	85		6%	15%	-500	-85%
				30	30		Consolidation of calibration hall		30	30		100%	100%		
390	3,305	3,695	1,120	2,405	3,525		Ramses II light	1,375	645	2,020	123%	27%	57%	-1,505	-43%
	480	480		895	895		Emergency		650	650		73%	73%	-245	-27%
1,085	4,890	5,975	1,540	5,910	7,450		Radioactive waste management	1,390	4,525	5,915	90%	77%	79%	-1,535	-21%
							SPS fire safety		5	5				5	
25	285	310	25	295	320	Infrastructure,	HLD Instrumentation upgrade	25	40	65	100%	14%	20%	-255	-80%
95	60	155	95	640	735	services and	International relations	140	555	695	147%	87%	95%	-40	-55
				115	115	centralised	New microcosm exhibition		100	100		87%	87%	-15	-13%
	60	60		190	190	expenses	IdeaSquare building	10	325	335		171%	176%	145	76%
				170	170	Included in Figure 6	Visitpoint							-170	-100%
							Alumni		10	10				10	
95		95	95	165	260		Other outreach projects	130	120	250	137%	73%	96%	-10	-4%
2,930	28,130	31,060	2,585	37,015	39,600		Infrastructure consolidation, buildings and renovation	3,085	30,460	33,545	119%	82%	85%	-6,055	-15
	50	50		5	5		AD control rooms		5	5		100%	100%		
115	5,780	5,895	120	6,355	6,475		Building 107 (surface treatment)	305	5,945	6,250	254%	94%	97%	-225	-3%
365	4,360	4,725	420	4,665	5,085		Building 311 (magnetic measurements)	595	2,135	2,730	142%	46%	54%	-2,355	-46%
				1,115	1,115		Building 774 (Prévessin main building)		865	865		78%	78%	-250	-22%
				500	500		Building 90 (new main building)	55	80	135		16%	27%	-365	-73%
	395	395		545	545		Building 156 (extension)		350	350		64%	64%	-195	-36%
	520	520		550	550		Library reading room							-550	-100%
	1,500	1,500					CMS site consolidation								
	1,105	1,105		3,530	3,530		Renovation Globe of Science and Innovation	-5	2,220	2,215		63%	63%	-1,315	-379
	-115	-115	75	30	105		LHCb building	75	70	145	100%	233%	138%	40	38%
	1,245	1,245		1,085	1,085		Workshop and assembly hall in LHC point 8		1,235	1,235		114%	114%	150	149
	1,170	1,170	40	2,775	2,815		Polymer laboratory consolidation	40	1,175	1,215	100%	42%	43%	-1,600	-57%
	465	465		500	500		Replacement of Water-Cooled Cables		-5	-5		-1%	-1%	-505	-1019
	10	10					ISOLDE robots		5	5				5	
2,450	11,645	14,095	1,930	15,360	17,290		Surface and technical infrastructure consolidation (roofs, facades, heating, etc.)	2,020	16,215	18,235	105%	106%	105%	945	59
							Cooling tower Point 18		10	10				10	
							Flexible storage building Prevessin		155	155				155	
1,045	1,220	2,265	1,120	1,140	2,260		EU projects	1,255	595	1,850	112%	52%	82%	-410	-18
105	1,605	1,710					TT projects		10	10				10	

Figure 8 (2/3): Expenses – Details of projects included in the activity headings

Figure 8 (3/3): Expenses – Details of projects included in the activity headings

(in kCHF, rounded off)

(in kCHF, rou								1							
Fin	al 2016 Budg	let		sed 2016 Bu				1	016 Out-Tur		Revised	2016 Budg	et usage	Variation of 201	
	CERN/FC/5955			(2016 prices)	-	Programme	Project		(2016 prices)			in %		respect to Revis	ed 2016 Budget
	(2016 prices)			(2010 plices) (a)		Frogramme	Filipeti		(2010 prices) (b)			(b)/(a)		(c) = (b)-(a)	(d) = (c)/(a)
Personnel	Materials	Total	Personnel	Materials	Total			Personnel	Materials	Total	Personnel		Total	kCHF	%
94,630	151,095	245,725	97,080	124,505	221,585		Projects	100,690	119,025	219.715	104%	96%	99%	-1,870	-1%
8,975	13,900	22.875	7.975	11,905	19.880		CLIC	7,595	10,010	17.605	95%	84%	89%	-2,275	-11%
2,920	440	3,360	2,920	445	3,365		Linear collider detector R&D	3,130	400	3,530	107%	90%	105%	165	5%
4,230	5.805	10.035	4.345	4.965	9.310		HIE-ISOLDE	4.200	2.970	7.170	97%	60%	77%	-2,140	-23%
3,765	9,655	13,420	3,825	7,870	11,695		ELENA	4,080	5,980	10,060	107%	76%	86%	-1,635	-14%
2,465	6,340	8,805	2,645	8,840	11,485		Proton Plasma wakefield acceleration (AWAKE)	2,355	7,535	9,890	89%	85%	86%	-1,595	-14%
				15	15		High radiation material test facility		15	15		100%	100%		
135	2,915	3,050	135	1,970	2,105		MEDICIS	170	1,325	1,495	126%	67%	71%	-610	-29%
2,240	14,570	16,810	2,155	15,095	17,250		CERN Neutrino Platform	1,775	20,820	22,595	82%	138%	131%	5,345	31%
3,095	2,125	5,220	3,315	2,660	5,975	Projects	LINAC4	3,145	2,385	5,530	95%	90%	93%	-445	-7%
18,340	27,115	45,455	18,430	17,955	36,385	Included in Figure 7	LHC Injectors Upgrade	19,190	17,820	37,010	104%	99%	102%	625	2%
24,310	35,300	59,610	24,640	22,100	46,740	included in Figure 7	LHC luminosity upgrade project (HL-LHC)	26,885	28,300	55,185	109%	128%	118%	8,445	18%
10,270	9,075	19,345	10,270	5,100	15,370		LHC detectors upgrade	12,370	5,740	18,110	120%	113%	118%	2,740	18%
4,805	3,880	8,685	6,225	3,095	9,320		Future Circular Collider study	7,625	3,445	11,070	122%	111%	119%	1,750	19%
30	3,700	3,730	30	4,410	4,440		Superconducting magnets R&D	345	2,165	2,510	1150%	49%	57%	-1,930	-43%
				2,200	2,200		SM18 extension for superconducting RF		15	15		1%	1%	-2,185	-99%
1,560	9,185	10,745	1,560	6,870	8,430		Upgrade Building 180 test facility (FAIR)	1,115	5,740	6,855	71%	84%	81%	-1,575	-19%
4,235	4,485	8,720	4,110	3,300	7,410		R&D for HL-LHC detectors	3,175	3,240	6,415		98%	87%	-995	-13%
3,255	2,470	5,725	4,500	5,565	10,065		EU projects	3,535	955	4,490	79%	17%	45%	-5,575	-55%
	135	135		145	145		TT projects		165	165		114%	114%	20	14%
136,790	306,400	443,190	142,305	273,795	416,100		Grand Total	147,810	237,750	385,560	104%	87%	93%	-30,540	-7%

3. SUMMARY OF EXPENSES BY NATURE

Figure 9: Materials expenses by nature

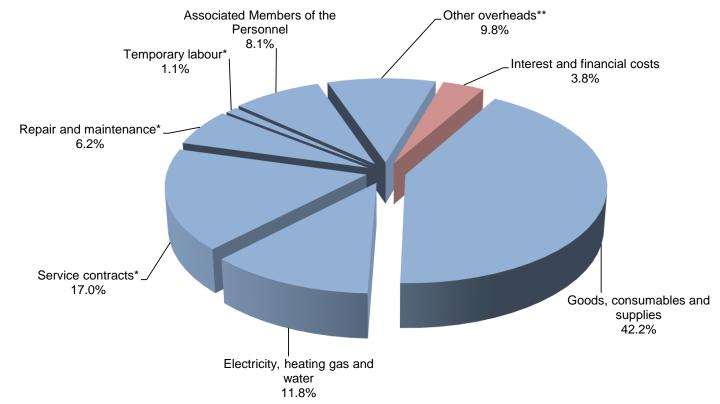
	(in kCHF, rounded off)						
		Final 2016 Budget CERN/FC/5955	Revised 2016 Budget	2016 Out-Turn CERN/FC/6096/Rev.	Revised 2016	Variation of 2016 respect to Revise	
	Nature	(2016 prices)	CERN/FC/6011 (2016 prices)	(2016 prices)	Budget usage in %	kCHF	%
			(a)	(b)	(b)/(a)	(c)=(b)-(a)	(c)/(a)
	Materials expenses	592 900	548 350	486 535	88.7%	-61 815	-11.3%
	Goods, consumables and supplies	323 315	270 275	213 487	79.0%	-56 788	-21.0%
	Electricity, heating gas and water	76 040	63 985	59 523	93.0%	-4 462	-7.0%
	Industrial services	106 230	117 460	122 925	104.7%	5 465	4.7%
	Service contracts	72 840	81 540	85 957	105.4%	4 417	5.4%
	Repair and maintenance	29 455	31 520	31 274	99.2%	-246	-0.8%
	Temporary labour	3 935	4 400	5 693	129.4%	1 293	29.4%
	Associated Members of the Personnel	39 625	40 665	41 087	101.0%	422	1.0%
	Other overheads	47 690	55 965	49 513	88.5%	-6 452	-11.5%
¹ Including insurance and postal	Consultancy	9 310	7 510	9 004	119.9%	1 494	19.9%
charges, handling and transport, bank	Contributions to Collaborations	7 030	6 825	7 495	109.8%	670	9.8%
charges, depreciation of current assets.	Miscellaneous ¹	31 350	41 630	33 015	79.3%	-8 615	-20.7%
	Interest and financial costs	12 885	12 885	19 454	151.0%	6 569	51.0%
² Theoretical interest at market rate for	Fortis bank	9 875	9 875	9 873	100.0%	-2	0.0%
FIPOI 1, 2 and 3 loans at 0%. This	In-kind (FIPOI interest 0%) ²	2 045	2 045	1 863	91.1%	-182	-8.9%
heading is compensated by the	Short-term interest			15		15	
corresponding revenue line "Other	Other financial expenses	965	965	7 703	798.3%	6 738	698.3%
revenues / In-kind".	TOTAL MATERIALS	605 785	561 235	505 989	90.2%	-55 246	-9.8%

(in kCHE rounded off)

Comments on Figure 9:

The "Other financial expenses" heading includes losses resulting from currency exchange-rate fluctuations that are not planned in the budget. Most of the loss of 7.7 MCHF in financial expenses recorded

in 2016 was offset by gains from currency exchange rate fluctuations of 5.6 MCHF under revenues.


Figure 10: Materials expenses by nature (chart)

Materials expenses: 96.2%

Interest and financial costs: 3.8%

* Total for industrial services: 17% + 6.2% + 1.1% = 24.3%.

** Including insurance and postal charges, consultancy, CERN contributions to collaborations, handling and transport, bank charges, depreciation of current assets.

Figure 11: Personnel expenses by nature

(in kCHF, rounded off)

Nature	Final 2016 Budget CERN/FC/5955	Revised 2016 Budget CERN/FC/6011	2016 Out-Turn CERN/FC/6096/Rev.	Revised 2016 Budget usage in %	Variation of 2016 Out-Turn with respect to Revised 2016 Budget		
Nature	(2016 prices)	(2016 prices)	(2016 prices)	usage in 70	kCHF	%	
		(a)	(b)	(b)/(a)	(c)=(b)-(a)	(c)/(a)	
Staff members ¹	484,495	488,035	488,725	100.1%	690	0.1%	
Basic salaries (incl. saved leave)	307,240	312,225	312,047	99.9%	-178	-0.1%	
Basic salaries	312,980	317,210	317,191	100.0%	-19	0.0%	
Contribution to saved leave schemes	-5,740	-4,985	-5,144	103.2%	-159	3.2%	
Annual variation - paid leave			-319		-319		
Allowances	67,015	64,585	66,046	102.3%	1,461	2.3%	
Non-resident allowances / international indemnities	20,265	19,690	19,696	100.0%	6	0.0%	
Family and child allowances	24,615	24,865	24,727	99.4%	-138	-0.6%	
Special allowances	2,560	2,160	2,791	129.2%	631	29.2%	
Overtime	2,600	2,755	2,654	96.3%	-101	-3.7%	
Various allowances	16,975	15,115	16,177	107.0%	1,062	7.0%	
Social contributions	110,240	111,225	110,951	99.8%	-274	-0.2%	
Pension Fund	85,505	86,060	85,826	99.7%	-234	-0.3%	
Health insurance	24,735	25,165	25,125	99.8%	-40	-0.2%	
<u>Fellows</u> ²	63,750	70,200	73,184	104.3%	2,984	4.3%	
Apprentices	425	400	422	105.5%	22	5.5%	
Centralised personnel budget ³	64,250	66,380	67,547	101.8%	1,167	1.8%	
Centralised personnel expenses	35,705	36, 335	36,096	99.3%	-239	-0.7%	
Installation, recruitment and termination of contracts	5,800	6,750	6,258	92.7%	-492	-7.3%	
Installation and removal costs	1,100	1,225	1,228	100.2%	3	0.2%	
Termination allowances	4,700	5,525	5,030	91.0%	-495	-9.0%	
Additional periods of membership of the Pension Fund for shift work ⁴	145	-240	19	-7.9%	259	-107.9%	
Contribution to health insurance for pensioners incl. long-term care	29,760	29,825	29,820	100.0%	-5	0.0%	
Contribution to health insurance for pensioners	26,860	27,020	27,016	100.0%	-4	0.0%	
Contribution to long-term care for pensioners	2,900	2,805	2,803	99.9%	-2	-0.1%	
Internal taxation	28,545	30,045	31,451	104.7%	1,406	4.7%	
TOTAL PERSONNEL	612,920	625,015	629,879	100.8%	4,864	0.8%	
Budget Amortisation of staff benefit accruals	17,330	17,330	17,328	100.0%	-2	0.0%	
TOTAL PERSONNEL incl. bud. amort. of staff benefit accruals	630,250	642,345	647,207		4,862		

¹ Including staff paid from team accounts (9.1 MCHF).

² Including fellows paid from team accounts (2.6 MCHF).

³ Including centralised expenses for staff and fellows paid from team accounts (0.06 MCHF).

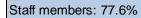
⁴ This is a variation on the provision for personnel on shiftwork in line with Administrative Circular 22A.

Comments on Figure 11:

The total CERN staff member strength in 2016 was 2,513.4 FTEs, of which 53.3 FTEs were charged to team accounts and 2,460.1 FTEs were charged to CERN accounts (2,439.1 FTEs under CERN core budget, 9.6 FTEs under EU funding, 5.9 under OpenLab, and 5.6 under other external revenues). Personnel "paid but not available" accounted for 20.7 FTEs, and 3 FTE were on detachment, resulting in a staff strength of 2,415.3 active FTEs charged to CERN's core budget.

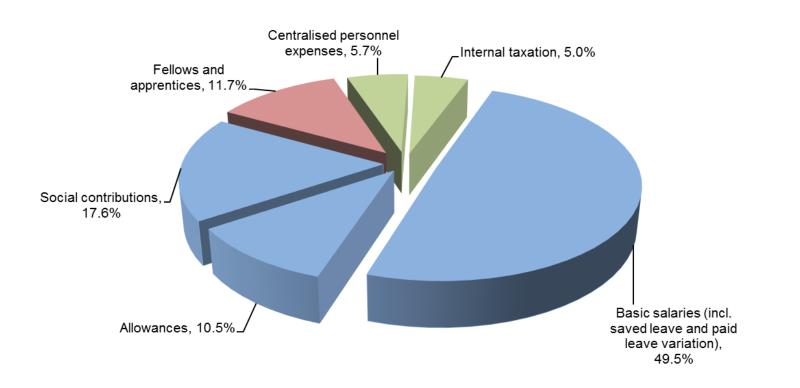
With respect to the Final Budget, the overall expenses for staff members were 0.9% higher, which is explained by the corresponding increase in the number of FTEs due to updated departures and recruitments.

The reduction in the amounts paid for allowances is mainly explained by a decrease of the non-resident allowances / international indemnities and of allowances under the heading "Various allowances". The number of staff who receive non-resident allowance is decreasing; furthermore, the international indemnity is suppressed for staff recruited after the 2005 Five-Yearly Review once they are awarded an indefinite contract. The heading "Various allowances" consists of expenses linked to education, home leave and termination indemnities. The amount of expenses for education is similar to the 2015 amount. Although higher than in 2015, payment of termination indemnities are lower than expected due to the new staff contract policy (possibility to extend an LD contract to up to 8 years). The special responsibility allowances shown under the special allowances heading increased.


With respect to the Final Budget, the social contributions expenses for staff members are higher, due to a corresponding increase in the number of FTEs.

The new Management increased the budget for the fellowship programme by 10%.

The apprentices recruited since September 2016 are no longer accounted within the personnel budget.


The termination allowances under the centralised personnel expenses mainly consist of reinstallation indemnities and unemployment benefits. The unemployment benefits decreased by 35% with respect to 2015, due to a decrease of beneficiaries (94 in 2015 and 56 in 2016). The amount for reinstallation allowances is difficult to predict, as the reinstallation payments can be made at any time during the 2.5 years following the end of the contract.

The amount of internal taxation depends on the applicable taxation rates, which are based on the salary positions of the staff and is offset by an equivalent revenue heading, thus having no impact on the budget balance. Figure 12: Personnel expenses by nature (chart)

Fellows and apprentices: 11.7%

Centralised personnel budget: 10.7%

Figure 13: Expenses - Energy and water

(in MCHF, rounded off)

	Final 2016 Budget CERN/FC/5955	Revised 2016 Budget	2016 Out-Turn CERN/FC/6096/Rev.	Revised 2016	Variation of 2016 Out-Turn with respect to Revised 2016 Budget		
Nature	(2016 prices)	CERN/EC/6011		Budget usage in %	MCHF	%	
	(a)	(b)	(c)	(c)/(b)	(d)=(c)-(b)	(d)/(b)	
Energy and water (baseload)	15.2	14.3	13.1	92.0%	-1.1	-8.0%	
Electricity	6.8	6.3	6.3	99.5%	0.0	-0.5%	
Heating oil and gas	4.8	4.4	3.7	84.8%	-0.7	-15.2%	
Water and waste water	3.6	3.6	3.2	87.5%	-0.5	-12.5%	
Energy for basic programmes	60.8	49.5	47.3	95.4%	-2.3	-4.6%	
Experimental areas ¹	14.2	13.0	13.0	100.0%	0.0	0.0%	
Data handling	1.7	1.6	1.3	83.7%	-0.3	-16.3%	
Accelerators:	21.5	13.9	12.5	89.4%	-1.5	-10.6%	
AD	0.6	0.5	0.6	110.4%	0.1	10.4%	
PS	3.6	3.0	3.0	100.3%	0.0	0.3%	
SPS ²	17.2	10.4	8.9	85.2%	-1.5	-14.8%	
LHC	23.4	21.0	20.4	97.4%	-0.5	-2.6%	
TOTAL ENERGY	76.0	63.8	60.4	94.6%	-3.4	-5.4%	

¹ This includes particle physics (PS and SPS fixed targets), ISOLDE, LHC experiments and LHC test beam to the East, West and North Areas.

² The reduction in electricity consumption for the SPS is due to lower intensity of the fixed target experimental programme following a problem with the SPS internal beam dump as well as CERN energy savings campaign.

4. CARRY-FORWARD

(in kCHF, rounded off)	Re-profiling included in 2016 Probable Expenses CERN/FC/6060	Comparison between 2016 Probable Expenses and 2016 Out-Turn ¹	Carry-forward to 2017 ²
Operation	13,885	10,963	7,327
LHC programme	5,295	744	-161
Other programmes	985	4,402	2,803
Infrastructure and services	7,745	5,100	4,025
R&D studies and projects	-140	718	660
Project	39,285	-3,291	-3,291
LHC programme	4,395	-4,158	-4,158
Other programmes	13,660	1,160	1,160
Infrastructure and services	10,690	4,799	4,799
R&D studies and projects	10,540	-5,091	-5,091
Total	53,170	7,673	4,037

Figure 14: Carry-forward

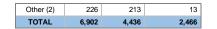
¹ Excluding the exchange gain and losses as compensated by the corresponding revenue.

² Calculated versus 2016 Probable Expenses

Comments on Figure 14:

The 53.2 MCHF of materials carry forward to 2017 and re-profiling to future years was already included in the 2016 Probable Revenues and Expenses (CERN/FC/6060).

The final comparison between the 2016 Probable Expenses and 2016 Out-Turn results in a further total positive balance for Materials of 7.7 MCHF (+11.0 MCHF for operation and -3.3 MCHF for projects).


On the basis of Article 9 of the CERN Financial Rules "The budget amounts shall be compared with the amounts of the final budget Out-Turn. The positive balance of that part of the budget which is allocated to multiannual projects shall be carried-forward to the following year within the Costto-Completion. The unused part of the budget allocated to operation shall be carried-forward to the following financial year, provided that it relates to commitments open when the accounts for the financial year concerned are closed. Any excess budget expenses shall be carried forward to the next financial year", the final calculated carry-forward totals 7.3 MCHF for operation and –3.3 MCHF for projects.

5. EU-SUPPORTED PROJECTS

Project name	Framework Programme	Project title	Start date	End Date	Total EC contribution kEUR	EC contribution to CERN kEUR	2016 Out-Turn kCHF	2016 EU resources kCHF	2016 additional resources (1) kCHF
EUCard2	FP7	Enhanced European Coordination For Accelerator Research And Development	01-May-13	30-Apr-17	8,000	1,910	1,385	374	1,011
TICAL	FP7	4D total absorption imaging calorimeter	01-Feb-14	31-Jan-18	2,258	2,258	530	530	
HICCUP	FP7	High Impact Cross-section Calculations for Unprecedented Precision	01-Apr-14	30-Mar-19	1,515	1,273	325	325	-
Best Paths	FP7	Beyond State-of-the-art technologies for power AC corridors and multi-terminal HVDC systems	01-Oct-14	30-Sep-18	35,500	804	190	190	-
Cessamag	FP7	CERN-EC Support for SESAME Magnets	01-Nov-12	31-Oct-16	5,000	5,000	121	121	-
LHCTheory	FP7	Theoretical predictions and analyses of LHC physics: advancing the precision frontier	01-Apr-12	31-Mar-17	2,050	1,718	104	104	-
EuroC	FP7	European Robotics Challenges	01-Jan-14	31-Dec-17	16,500	24	59	59	-
TeraUniverse	FP7	Exploring The Terauniverse With The Lhc, Astrophysics And Cosmology	01-Apr-11	31-Mar-16	1,929	433	17	17	-
Chanda	FP7	solving CHAllenges in Nuclear Data	01-Dec-13	30-Nov-17	5,400	117	13	-	13
GO-Lab	FP7	Global Online Science Labs for Inquiry Learning at School	01-Nov-12	31-Oct-16	9,697	168	11	12	- 1
HotLHC	FP7	Hot and dense QCD in the LHC era	01-Jan-12	31-Dec-16	1,379	151	8	8	-
EUHit	FP7	European High-Performance Infrastructures in Turbulence	01-Apr-13	31-Mar-17	7,000	173	2	2	-
Citymobil2	FP7	Cities Demonstrating Cybernetic Mobility	01-Sep-12	31-Aug-16	9,500	27	-	-	-
Torch	FP7	A Large-Aera Detector For Precision Time-of-Flight Measurements	01-Jun-12	31-May-17	2,696	1,395	- 330	- 330	-
AIDA-2020	H2020	Advanced European Infrastructures for Detectors at Accelerators	01-May-15	30-Apr-19	10,000	2,356	1,185	383	802
HNSciCloud	H2020	Helix Nebula the SClence Cloud	01-Jan-16	30-Jun-18	6,230	1,759	392	297	95
QUACO	H2020	QUAdrupoleCOrrector	01-Mar-16	28-Feb-20	4,653	3,961	350	75	275
BetaDropMNR	H2020	Ultra-sensitive NMR in liquids	01-Oct-15	30-Sep-20	1,500	1,500	413	305	108
THOR	H2020	Technical and Human Infrastructure for Open	01-Jun-15	30-Nov-17	3,456	854	288	288	-
Neonat	H2020	Understanding the mass scales in nature	01-Dec-15	30-Nov-20	1,876	1,463	216	216	-
EUDAT2020	H2020	European DATa 2020	01-Mar-15	28-Feb-18	19,200	669	207	207	-
BrightnESS	H2020	Building a research infrastructure and synergies for highest scientific impact on ESS	01-Sep-15	31-Aug-18	19,942	715	188	188	-
ENSAR2	H2020	European Nuclear Science and Application Research 2	01-Mar-16	29-Feb-20	10,000	983	172	124	48
Indigo-DataClouds	H2020	INtegrating Distributed data Infrastructures for Global ExplOitation	01-Apr-15	30-Sep-17	11,000	306	115	115	-
AARC	H2020	Authentication and Authorisation for Research and Collaboration	01-May-15	30-Apr-17	2,941	193	113	113	-
FAST	H2020	Fast advanced Scintillator Timing	01-Jan-15	30-Apr-16	200	200	99	99	-
OpenAIRE2020	H2020	Open Access Infrastructure for Research in Europe	01-Jan-15	30-Jun-18	13,000	465	85	85	-
TURBO-PET	H2020	New high-resolution, high-sensitivity dedicated breast positron emission tomography scanner	01-Nov-14	31-Oct-17	2,200	95	75	31	44
CREMLIN	H2020	Connecting Russian and European Measures for Large-scale Research Infrastructures	01-Sep-15	30-Aug-18	1,696	76	74	15	58
Egi Engage	H2020	European Grid Infrastructure Engage	01-Mar-15	30-Jul-17	8,000	138	57	57	-
ULTIMA	H2020	ULTrafast Imaging sensor for Medical Applications	01-Sep-15	28-Feb-17	150	150	55	55	-
CREATIONS	H2020	CREATIONS - Developing an Engaging Science Classroom	01-Oct-15	30-Sep-18	1,798	170	44	44	-
Eurocircol	H2020	European Circular Energy-Frontier Collider Study	01-Jun-15	31-May-19	2,999	138	42	42	-
MathAM	H2020	Mathematical Structures in Scattering Amplitudes	01-Sep-15	31-Aug-20	1,365	943	31	31	-
Picse	H2020	Procurement Innovation for Cloud Services in Europe	01-Oct-14	31-Mar-16	500	187	29	29	-
Myrte	H2020	MYRRHA Research and Transmutation Endeavour	01-Apr-15	31-Mar-19	8,996	106	3	3	-
ASCIMAT	H2020	Advanced Scintillation Materials of the Institute of Physics from the Czech Academy of Sciences	01-Jan-16	31-Dec-18	999	144	9	9	

Figure 15: EU Projects

(1) Costs incurred by CERN and declared to the European Commission as additional contribution: does not take into consideration other direct support and central administrative costs (2) EU projects administrative support; costs for obtaining audit certificates

Comments on Figure 15:¹

Figure 15 shows all EU projects, other than Marie Curie projects, still active in 2016. The 2016 figures are split into EU-funded expenses and additional expenses funded by CERN's core budget in line with the specific contracts signed separately for each project. Most of the EU-supported projects concern R&D for accelerators and detectors (CESSAMag, EuCARD-2, Aida2020). The EU resources for projects other than Marie Curie projects have decreased by 38.0%. This decrease is due to the end of major FP7 projects (AIDA, HILUMI, COFUND-2), and to a correction for the TORCH project in the 2015 accounts.

Eleven new EU projects were selected for funding in 2016, with a start date in 2017, in the framework of a total European Commission (EC) contribution of 4.57 MEUR (over a period of 4 years).

The newly selected projects are funded under the following programmes:

- Marie Curie: 5 projects (EC funding for CERN of 1.6 MEUR),
- Excellent Science: 5 projects (EC funding for CERN of 2.6 MEUR),
- Other: 1 project (EC funding for CERN of 0.38 MEUR).

Out of these 11 projects, two are coordinated by CERN and three are mono-site projects (CERN is the only beneficiary of the grant). Of a total number of 155 EU projects funded since 2007, 44 are or have been coordinated by CERN and 36 are or have been monosite projects.

¹ This document presents the actual spending of EU projects during the year that will be covered by an EU contribution. The Financial Statements show the same values and in addition the accounting entries (typically the balance when we close a project).

Project name	Framework Programme	Project title	Start date	End Date	Total EC contribution kEUR	EC contribution to CERN kEUR	2016 Out-Turn kCHF	2016 EU resources kCHF	2016 additional resources (1) kCHF
COFUND-4	FP7	Cofunding Of The Cern Fellowship Programme 4	01-Oct-13	30-Sep-18	8,000	8,000	2,288	2,288	-
COFUND-3	FP7	Cofunding Of The Cern Fellowship Programme 3	01-Oct-12	30-Sep-17	10,000	10,000	1,673	1,673	-
PacMan	FP7	A Study on Particle Accelerator Components' Metrology and Alignment to the Nanometre scale	01-Sep-13	31-Aug-17	2,671	2,671	983	983	-
Ice-Dip	FP7	Intel-Cern European Doctorate Industrial Program	01-Feb-13	31-Jan-17	1,249	1,249	338	338	-
Mcnet-ITN	FP7	Training Network for Monte Carlo Event Generators for LHC Physics	01-Jan-13	31-Dec-16	3,947	497	202	202	-
EFTstrong	FP7	Effective Theories for Strong Interactions: precison Tools to Meet Experiment	01-Sep-15	31-Aug-17	269	269	146	146	-
EPLANET	FP7	European Particle Physics Latin American Network	01-Feb-11	31-Jan-16	3,245	2,298	124	19	104
EDUSAFE	FP7	Education in Advance VR/AR Safety Systems for Maintenance in Extreme Environments	01-Sep-12	31-Aug-16	3,121	500	110	110	-
FTK	FP7	Fast Tracker for Hadron Collider Experiments	01-Feb-13	31-Jan-17	1,595	187	100	100	-
HiggsSelfCoupling	FP7	Precision Higgs Boson Self-Coupling Measurements	01-Nov-14	31-Oct-16	199	199	84	84	-
BSMafterLHC8	FP7	Directions for BSM Physics after the First Run of the LHC	01-Oct-14	30-Sep-16	208	208	83	83	-
Bootstrap	FP7	Conformal Bootstrap Methods and their applications	01-Sep-14	31-Aug-16	208	208	65	65	-
Cloud-TRAIN	FP7	Cloud Initial Training Network 2	01-Oct-12	30-Sep-16	3,772	689	53	53	-
Ardent	FP7	Advanced Radiation Dosimetry European Network Training initiative	01-Feb-12	31-Jan-16	3,988	1,115	5	5	-
COFUND-5	H2020	COFUNDing of the CERN Fellowship Programme 2014	01-Oct-15	30-Sep-20	6,372	6,372	693	693	-
Medicis-Promed	H2020	MEDICIS-produced radioisotope beams for medicine	01-Apr-15	31-Mar-19	2,829	796	312	247	66
STREAM	H2020	Smart Sensor Technologies and Training for Radiation Enhanced Applications and Measurements	01-Jan-16	31-Dec-19	3,873	707	169	153	16
NP4theLHC14	H2020	New Physics for the Large Hadron Collider: new minimal models of composite Higgs - NP4theLHC14	01-Oct-15	30-Sep-17	187	187	132	95	37
ResolvedJetsHIC	H2020	Probing the Strongly-Coupled Quark-Gluon Plasma with Jets — Resolved Jets HIC	01-Nov-15	31-Oct-17	175	175	138	77	61
AMVA4NewPhysics	H2020	Advanced Multi-Variate Analysis for New Physics Searches at the LHC	01-Sep-15	31-Aug-19	2,402	350	77	63	14
E-jade	H2020	Europe-Japan Accelerator Development Exchange Programme	01-Jan-15	31-Dec-18	1,651	628	54	54	-
Intelum	H2020	International and intersectoral mobility to develop advanced scintillating fibres and Cerenkov fibres for new hadron and jet calorimeters for future colliders	01-Mar-15	28-Feb-19	922	102	39	39	-
PrecisionTools4LHC	H2020	High precision predictions and tools for LHC Physics	01-Oct-16	30-Sep-18	175	175	34	23	12
Invisibles Plus	H2020	invisibles neutinos, dark matter & dark energy physics	01-Feb-16	31-Jan-20	2,070	130	13	13	-
OMA	H2020	Optimization of Medical Accelerators	01-Feb-16	31-Jan-20	3,872	265	13	13	-
Mixmax	H2020	Development and Implementation of new generation of Pseudo Random Number Generators based on Kolmogorov-Anosov K-systems	01-Jan-15	31-Dec-18	252	18	2	2	-

Figure 16: Marie Curie Projects

(1) Costs incurred by CERN as additional support to the projects: does not take into consideration other direct support and central administrative costs (2) HR-TA andFAP-EF expenses for Marie Curie projects administration and financial management

Comments on Figure 16:

Figure 16 shows all EU Marie Curie projects at CERN still active in 2016. The 2016 figures are split into EU-funded expenses and additional expenses funded by CERN's core budget in line with the specific contract signed separately for each project.

In 2016, Marie Curie projects represented 64% of CERN's total EU funding.

This is mostly due to the four-year Initial Training Networks and COFUND projects, which co-fund the CERN fellowship programme. The EU funding for Marie Curie projects decreased by 22% in 2016, due to the end of 16 projects since 2015, including one COFUND project, and the long implementation of the new ones, such as the RISE projects.

Other (2)

TOTAL

290

8.220

290

7,911

310

Project	Framework Programme	Start date	End Date	EU contribution for CERN - kEUR	% completion (time)	% contribution used
Ardent	FP7	01-Feb-12	31-Jan-16	1,115	100.00%	100.00%
EPLANET	FP7	01-Feb-11	31-Jan-16	2,298	100.00%	83.38%
TeraUniverse	FP7	01-Apr-11	31-Mar-16	433	100.00%	91.55%
Bootstrap	FP7	01-Sep-14	31-Aug-16	208	100.00%	100.00%
Citymobil2	FP7	01-Sep-12	31-Aug-16	27	100.00%	86.08%
EDUSAFE	FP7	01-Sep-12	31-Aug-16	500	100.00%	96.24%
BSMafterLHC8	FP7	01-Oct-14	30-Sep-16	208	100.00%	100.00%
Cloud-TRAIN	FP7	01-Oct-12	30-Sep-16	689	100.00%	100.00%
Cessamag	FP7	01-Nov-12	31-Oct-16	5,000	100.00%	100.00%
GO-Lab	FP7	01-Nov-12	31-Oct-16	168	100.00%	96.40%
HiggsSelfCoupling	FP7	01-Nov-14	31-Oct-16	199	100.00%	100.00%
Mcnet-ITN	FP7	01-Jan-13	31-Dec-16	497	100.00%	93.30%
Picse	H2020	01-Oct-14	31-Mar-16	187	100.00%	100.00%
					Average	96%

Comments on Figure 17:

Figure 17 shows the use of EU contributions at CERN for the whole duration of finished projects with a financial activity in 2016.

The utilisation rate of the EU financial contribution amounted to 96% on average. Lower use of contributions can be due either to the

difference between flat rates used by the EC to compute the financial contribution and the real costs incurred by the Organization (Marie Curie projects) or to the over-estimation of the overall effort in the initial budget.

150

150

Average

89.19%

46%

34.65%

31%

Figure 18: EU Projects financial status – On-going projects

FP7 - On-going projects							H2020 - On-going projects								
Project	Framework Programme	Start date	End Date	Max. contribution (Total) - kEUR	EU contribution for CERN - kEUR	% completion (time)	% contribution used	Project	Framework Programme	Start date	End Date	Max. contribution (Total) - kEUR	EU contribution for CERN - kEUR	% completion (time)	% contribution used
Ardent	FP7	01-Feb-12	31-Jan-16	3,988	1,115	100.00%	100.00%	AARC	H2020	01-May-15	30-Apr-17	2,941	193	83.56%	72.72%
Best Paths	FP7	01-Oct-14	30-Sep-18	35,500	804	56.30%	32.29%	AIDA-2020	H2020	01-May-15	30-Apr-19	10,000	2,356	41.78%	26.18%
Bootstrap	FP7	01-Sep-14	31-Aug-16	208	208	100.00%	100.00%	AMVA4NewPhysics	H2020	01-Sep-15	31-Aug-19	2,402	700	33.36%	8.20%
BSMafterLHC8	FP7	01-Oct-14	30-Sep-16	208	208	100.00%	100.00%	ASCIMAT	H2020	01-Jan-16	31-Dec-18	999	144	33.33%	5.88%
Cessamag	FP7	01-Nov-12	31-Oct-16	5,000	5,000	100.00%	100.00%	BetaDropMNR	H2020	01-Oct-15	30-Sep-20	1,500	1,500	25.03%	23.24%
Chanda	FP7	01-Dec-13	30-Nov-17	5,400	117	77.12%	100.00%	BrightnESS	H2020	01-Sep-15	31-Aug-18	19,942	715	44.47%	24.21%
Citymobil2	FP7	01-Sep-12	31-Aug-16	9,500	27	100.00%	86.08%	COFUND-5	H2020	01-Oct-15	30-Sep-20	6,372	6,372	25.03%	9.98%
Cloud-TRAIN	FP7	01-Oct-12	30-Sep-16	3,772	689	100.00%	100.00%	Creations	H2020	01-Oct-15	30-Sep-18	1,798	170	41.74%	24.00%
COFUND-3	FP7	01-Oct-12	30-Sep-17	10,000	10,000	85.04%	67.21%	Cremlin	H2020	01-Sep-15	30-Aug-18	1,696	76	44.52%	18.37%
COFUND-4	FP7	01-Oct-13	30-Sep-18	8,000	8,000	65.04%	49.88%	Egi Engage	H2020	01-Mar-15	30-Jul-17	8,000	81	76.08%	100.00%
EDUSAFE	FP7	01-Sep-12	31-Aug-16	3,121	500	100.00%	96.24%	E-jade	H2020	01-Jan-15	31-Dec-18	581	628	50.00%	9.18%
EFTstrong	FP7	01-Sep-15	31-Aug-17	269	269	66.71%	66.43%	ENSAR2	H2020	01-Mar-16	29-Feb-20	10,000	983	20.89%	11.55%
EPLANET	FP7	01-Feb-11	31-Jan-16	3,245	2,298	100.00%	83.38%	EUDAT2020	H2020	01-Mar-15	28-Feb-18	19,200	669	61.28%	44.08%
EUCard2	FP7	01-May-13	30-Apr-17	8,000	1,910	91.78%	70.52%	Eurocircol	H2020	01-Jun-15	31-May-19	2,999	138	39.66%	27.83%
EUHit	FP7	01-Apr-13	31-Mar-17	7,000	173	93.84%	40.46%	FAST	H2020	20-Nov-14	20-Nov-18	200	200	52.84%	68.52%
EuroC	FP7	01-Jan-14	31-Dec-17	16,500	24	75.00%	100.00%	HNSciCloud	H2020	01-Jan-16	30-Jun-18	6,230	1,759	40.07%	15.48%
FTK	FP7	01-Feb-13	31-Jan-17	1,595	187	97.88%	99.80%	Indigo-DataClouds	H2020	01-Apr-15	30-Sep-17	11,000	306	70.10%	60.55%
GO-Lab	FP7	01-Nov-12	31-Oct-16	9,697	168	100.00%	96.40%	Intelum	H2020	01-Mar-15	28-Feb-19	922	102	45.96%	53.51%
HICCUP	FP7	01-Apr-14	30-Mar-19	1,515	1,273	55.10%	30.53%	Invisibles Plus	H2020	01-Feb-16	31-Jan-20	2,070	130	22.88%	9.50%
HiggsSelfCoupling	FP7	01-Nov-14	31-Oct-16	199	199	100.00%	100.00%	MathAM	H2020	01-Sep-15	31-Aug-20	1,365	943	26.67%	3.01%
HotLHC	FP7	01-Jan-12	31-Dec-16	1,379	151	100.00%	63.29%	Medicis-Promed	H2020	01-Apr-15	31-Mar-19	2,829	796	43.84%	30.88%
lce-Dip	FP7	01-Feb-13	31-Jan-17	1,249	1,249	97.88%	100.00%	Mixmax	H2020	01-Jan-15	31-Dec-18	252	18	50.00%	8.97%
LHCTheory	FP7	01-Apr-12	31-Mar-17	2,050	1,718	95.07%	89.20%	Myrte	H2020	01-Apr-15	31-Mar-19	8,996	106	43.84%	3.10%
Mcnet-ITN	FP7	01-Jan-13	31-Dec-16	3,947	497	100.00%	93.30%	Neonat	H2020	01-Dec-15	30-Nov-20	1,876	1,463	21.69%	13.56%
PacMan	FP7	01-Sep-13	31-Aug-17	2,671	2,671	83.36%	99.00%	NP4theLHC14	H2020	01-Oct-15	30-Sep-17	187	187	62.60%	58.84%
TeraUniverse	FP7	01-Apr-11	31-Mar-16	1,929	433	100.00%	91.55%	OMA	H2020	01-Feb-16	31-Jan-20	3,872	265	22.88%	4.35%
TICAL	FP7	01-Feb-14	31-Jan-18	2,258	2,258	72.88%	63.47%	OpenAIRE2020	H2020	01-Jan-15	30-Jun-18	13,000	465	57.21%	51.77%
Torch	FP7	01-Jun-12	31-May-17	2,696	1,395	91.73%	51.94%	Picse	H2020	01-Oct-14	31-Mar-16	500	187	100.00%	97.08%
					Average	89%	81%	PrecisionTools4LHC	H2020	01-Oct-16	30-Sep-18	175	175	12.48%	11.89%
								QUACO	H2020	01-Mar-16	28-Feb-20	4,653	3,961	20.90%	1.73%
								ResolvedJetsHIC	H2020	01-Nov-15	31-Oct-17	175	175	58.36%	51.25%
								STREAM	H2020	01-Jan-16	31-Dec-19	3,873	707	25.00%	19.86%
								THOR	H2020	01-Jun-15	30-Nov-17	3,456	854	63.42%	44.67%
								TURBO-PET	H2020	01-Nov-14	31-Oct-17	2,200	95	72.24%	31.85%
									1						

ULTIMA

H2020

01-Sep-15 28-Feb-17

Comments on Figure 18:

Figure 18 shows the amount of time spent on each EU project compared to the overall completion time and the percentage of the EU contribution used as at 31 December 2016. The discrepancy in H2020 projects between the completion time and the amount of the contribution used is explained by:

- the 2 PCP projects (Quaco and HNSciCloud), for which the costs for the PCP are foreseen in Year 2;
- the difficulties in implementing the secondment of 3 RISE projects;

- the slow implementation of COFUND-5, for which only 18 ESR of the 60 planned started in 2016;
- the late recruitment of personnel on ITN and ERC projects;

The expenses for the projects shown as underspending in figure 18 will be balanced in the coming years.

AIDA 2020

In spring 2017, the AIDA-2020 project (coordinated by CERN) will be approaching completion of the first two years of activities. Since the beginning of the project, the 15 work packages (of which 6 are coordinated by CERN staff together with a second coordinator from another institute) have been the subject over 80 meetings. The First Annual Meeting took place at DESY in Hamburg with 135 participants. Members of the project have produced more than 30 publications, including journal papers and conference proceedings. About 40 communication and dissemination activities, including posters, talks and press articles have been registered.

CERN teams are actively involved in most of the work packages and have significantly contributed to the advances made in AIDA-2020 during the year. A few examples are given below:

After an early launch of the project web-side and the newsletter "On Track", activities in **WP2 (Innovation and Outreach)** turned to producing informative videos to illustrate the capacities of the nine facilities provided under the AIDA-2020 Transnational Access programme. Moreover, a technology landscape report was delivered, giving insight into the domains of detector technology where dissemination from research to industry is highest. In summer 2016, AIDA-2020, through WP2, had opened a call for proposals for its Proof-of-Concept innovation fund. It received 11 good applications, and three successful applicants have since been selected for funding. In **WP3 (Advanced Software)**, the six milestones met during 2016 included enhancements to the geometry package DD4Hep, design documents for a new Event Data Model and a running prototype for a Geant4-based simulation toolkit using USolids with realistic LHC geometries.

Major CERN contributions to **WP7 (Advanced Hybrid Pixel Detectors)** were made in the areas of dedicated simulations (TCAD) of silicon sensors and through the validation of pixel detector prototypes in several test-beam campaigns. The combined results of tests and simulations led to an optimised layout ("active-edge") for future sensor productions.

Prototypes of standard micro-fabrication technologies for silicon cooling devices were produced as part of WP9 (New Support Structures and Micro-Channel Cooling). Important progress has also been made in the field of miniaturised high-pressure hydraulic connectors.

The Transnational Access to CERN PS and SPS test beams (the CERN part of **WP10**) supported more than 200 users. Close to 10% of the access units was granted to user groups from non-EU or associated countries. The Transnational Access to the GIF++ Gamma Irradiation Facility and the IRRAD Proton Irradiation Facility (**WP11**) allowed more than 50 users to either benefit from financial support in performing their irradiation experiments at CERN or to gain access to irradiation tests performed by the irradiation facilities' operation teams.

In WP 14 (Infrastructure for Advanced Calorimeters) significant progress was made on irradiated silicon sensor systems for highly granular calorimeters at the LHC. Moreover, work on the improvement of a light-attenuation bench to characterize long scintillating fibres with several excitation wavelengths resulted in a system which allows the transport of light from a large range of scintillator materials.

For WP15 (Upgrade of Beam and Irradiation Test Infrastructure),

important milestones have been achieved such as the specifications for an online user and sample management system for the IRRAD proton facility and the design of an upgraded cosmic tracker for the Gamma Irradiation Facility (GIF++) at CERN. The delivery and commissioning of a new particle beam pixel telescope was completed ahead of schedule, and the telescope is now operational at the CERN PS.

EuCARD-2

The EuCARD-2 project promotes a coordinated R&D effort to develop the next generation of particle accelerators. It brings together more than 300 participants from 40 universities, research laboratories and industries working on 12 advanced Work packages covering key accelerator technologies and provides access to three test facilities. The project started in May 2013 and will be completed in April 2017. During 2016, the project has finalised some key milestones and deliverables, in preparation for the final reporting that will take place in early 2017.

The 16 deliverable reports produced in 2016 marked the progress made in many different fields. Two reports have assessed the industrial potential of proton acceleration of low and intermediate energies for domains as varied as material testing, boron neutron capture therapy, heating of fusion plasmas, special isotope production, nuclear imaging and diagnostics (Positron Emission Tomography, PET, and Single Photon Emission Computed Tomography, SPECT), and production of radioisotopes as therapeutic agents for cancer treatments. Four detailed reports have analysed the future development strategies for the advanced European accelerator infrastructure: particle colliders, highperformance hadron rings, high-power high-current superconducting linacs, and polarised beam accelerators. Simulation of new collimator materials, and energy storage and virtual power plant approaches for large accelerator facilities, were other subjects analysed during the past year. Considerable progress was made as well in the field of novel plasma wakefield accelerator techniques, where the new design study for a pilot plasma-based user facility promoted by EuCARD-2 (EuPRAXIA) gained considerable momentum, involving a wide scientific community.

In 2016 the project organised or co-organised 21 workshops on advanced subjects related to future accelerator technologies. Some of these workshops were devoted to applications of accelerators for medicine, industry and the environment, the focus of the year in this respect being an event on low-energy electron beams for industrial and environmental applications that attracted wide industrial participation. Other subjects included the global efficiency of proton driver accelerators, coordination of European superconducting magnet test stands, technological challenges shared by lowemittance rings, and upgrading strategies for high-power proton linacs. Finally, an end-of-year workshop in Scharbeutz (Germany) gathered together 25 accelerator experts from around the world with experience in different accelerator technologies with the goal of figuring out how the particle accelerator landscape will look at the end of this century. Are we moving towards larger global accelerators or smaller distributed facilities? Are accelerators going to be widely installed in industries and hospitals, or will they remain specialised instruments reserved for scientific institutions? Are we going to see miniaturised accelerators on electronic chips or attached to lasers? Not surprisingly, the expert panel agreed in identifying some common trends and in predicting a bright future for particle accelerator technologies.

CESSAMag

The acceptance tests on the last batches of SESAME magnets were successfully passed in early 2016, and the batches were shipped to SESAME. By the end of March 2016, all magnets had been delivered to SESAME on time. The powering scheme followed suit, arriving in SESAME in February 2016. Unfortunately, some limited mechanical damage and pollution of electronic cards by salted water was observed in some racks. After rinsing the electronics and replacing the damaged parts, the system was fully operational in August 2016, with no impact on quality or schedule.

The bulk of the CESSAMag activity in 2016 was directed towards supporting installation and commissioning. In the early part of the year, the survey network was established, connected to the network of the injectors and extended to the experimental areas. The same network was checked after the end of installation in November, to verify the impact of the removal and reinstallation of the concrete ceiling of the machine tunnel, and was properly corrected. The girders were aligned after installation, and a first machine cell was installed and aligned in the second guarter of 2016. This was used to refine and formalize the installation strategy to be followed by the SESAME team for the 15 other cells. In November 2016, in collaboration with the SESAME team, the hardware commissioning of the CESSAMag equipment was carried out: for the magnets, this consisted of tests of interconnections, tests of polarities, adjustment of thresholds for interlock circuits, and thermal checks of interconnections at full power; some high voltage tests could not be carried out, due to the insufficient insulating properties of the cooling water, which was due to be improved. For the powering scheme, all connections were checked, as were polarities, communication with the control system, and interlocks. Some minor errors were corrected. Finally, and for the first time, the dipole chain was powered to its nominal excitation, corresponding to 2.5 GeV, for 6 hours; the stability and noise were monitored and found to be within specifications. The CESSAMag activities are coming to an end with the closure of the books and the production of a large number of deliverable reports, the activity reports for the second period and the final report. A concluding communication on science for peace (the final deliverable) was produced, co-signed by CERN, the European Commission and SESAME.

In January 2017, we were informed of the first beam in the storage ring, and the opening ceremony is scheduled for May 2017, to be attended by a CERN delegation including the Director-General.

6. NEW COLLABORATION AGREEMENTS

Country / Organization	Agreeme Referend				(DAE) of the Government of India for the construction of waveguide couplers for the LINAC4 Project at CERN
Brazil	13 September 2006 between the European F/8 Organization for Nuclear Research (CERN) and O O Conselho Nacionalde Desenvolvimento	P090/CT F/8	Implementation Contract between KEK and CERN concerning mutual CERN-KEK Offices for the Promotion of Collaborative Projects concerning Accelerator Science		
		Cientifico e Tecnologicodo Brasil (CNPq) concerning Scientific and Technical Co-operation in High-Energy Physics	Japan	P090/CT F/9	Collaborative Research Contract between CERN and KEK concerning collaboration on High Gradient Accelerator Technology Centred at
Estonia	P133	Protocol to the 2010 Co-operation Agreement between the European Organization for Nuclear			Fabrication and Tests of X-Band Acceleratin Structures (KEK)
		Research (CERN) and the Republic of Estonia concerning participation of Universities and Scientific Institutions from the Republic of Estonia in CERN's scientific programme	Latvia	ICA-LV- 0137	Cooperation Agreement between the European Organization for Nuclear Research (CERN) and the Government of the Republic of Latvia concerning Scientific and Technical Cooperation
Georgia	P119/A2	Addendum N. 2 to Protocol P119 to the 2008 Co-operation Agreement between the European Organization for Nuclear Research (CERN) and the Government of Georgia concerning collaboration in integration work aimed at comparing engineering models and as-built LHC Long Straight Sectionelements for the High Luminosity LHC Project at CERN	Malta	P121/A3	in High-Energy Physics Addendum N. 3 to Protocol P121 to the 2008 Co-operation Agreement between the European Organization for Nuclear Research (CERN) and the Government of the Republic of Malta concerning collaboration in magnetic field modeling and measurement techniques for the control of particle accelerators
India	India P074/LH C/LINAC 4/W2	IAC 15 February 2006 to the 1991 Co-operation	Malta	P121/A4	Addendum N. 4 to Protocol P121 to the 2008 Co-operation Agreement between the European Organization for Nuclear Research (CERN) and the Government of the Republic of Malta concerning collaboration in the development of control software for the LHC collimation system of the Large Hadron Collider (LHC) at CERN
	This Addendum defines the collaboration between CERN and the Department of Atomic Energy		Qatar	ICA-QA- 0136	Cooperation Agreement between the European Organization for Nuclear Research (CERN) and the Qatar Foundation for Education, Science

		and Community Development concerning Scientific and Technical Cooperation in High- Energy Physics	Russia	P109/A1 2	Addendum N. P109/A12 to the 2013 Protocol concerning scientific collaboration between the European Organization for Nuclear Research
JINR	P115/A2	Addendum P115/A.2 to Protocol P115 to the 2010 Co-operation Agreement concerning scientific and technical co-operation between the European Organization for Nuclear Research (CERN)and the Joint Institute for Nuclear Research(JINR) concerning collaboration in software development for administrative applications			(CERN) and the National Research Centre Kurchatov Institute (NRC KI) to the 1993 Co-operation Agreement between the Government of the Russian Federation and CERN concerning participation of the State Research Center of the Russian Federation- Institute for High Energy Physics (IHEP)in the 2017 campaign of upgrade
JINR	P123/A1	Addendum N. 1 to the 2015 Protocol P123 to the 2010 Co-operation Agreement between the European Organization for Nuclear Research			of the Beam Loss Monitor (BLM) system of the CERN accelerator chain during Extended Year- End Technical Stop (EYETS)
		(CERN) and the Joint Institute for Nuclear Research (JINR) concerning collaboration in the design, manufacture and assembly of Precision Laser Inclinometer to monitor ground angular oscillations during the LHC operations with the aim of studying their effects on the luminosity for the High Luminosity LHC beam delivered to the ATLAS Experiment	Russia	P109/A1 3	Addendum Nº P109/A13 to the 2013 Protocol concerning scientific collaboration between the European Organisation for Nuclear Research (CERN) and the National Research Centre Kurchatov Institute (NRC-KI) to the 1993 Co- operation Agreement between the Government of the Russian Federation and CERN concerning additional work for the production of Ionization Chambers of the Beam Loss Monitoring system
JINR	P124/A2	Addendum N ^o 2 to Protocol P124 to the 2010 Co-operation Agreement between the European Organization for Nuclear Research (CERN) and the Joint Institute for Nuclear Research (JINR) concerning work concerning various steel structures in concerning the NP01, NP02, NP03, NP04 and NP05 projects in the Neutrino Platform	Russia	P110/A3	at CERN Addendum N. P110/A3 to the 2013 Protocol concerning scientific collaboration between the European Organization for Nuclear Research (CERN) and the Budker Institute of Nuclear Physics (BINP)
Russia	P068/LH C/A3	Addendum A3 to Protocol P068/LHC concerning participation in the experimental programme at the Large Hadron Collider (LHC). Protocol concerning contributions of the Russian Teams to the LHC experiments covering Maintenance and Operation expenditures at CERN in 2016			

7. OCCUPATIONAL ACCIDENTS

Figure 19a: Frequency and Severity rates over the last 30 years

Year	Employed n the per		CERN Co	ntractors
	Frequency	Severity	Frequency	Severity
	rate	rate	rate	rate
1987	10.00	0.20		
1988	11.70	0.18		
1989	8.30	0.11	22.78	0.49
1990	6.20	0.10	27.33	0.34
1991	6.60	0.10	41.45	0.85
1992	5.20	0.07	27.43	0.85
1993	7.03	0.16	22.30	0.40
1994	5.70	0.21	20.94	0.31
1995	4.33	0.09	20.30	0.41
1996	6.17	0.11	23.48	0.50
1997	5.81	0.14	20.70	0.55
1998	3.82	0.06	25.52	0.37
1999	4.66	0.09	25.39	0.56
2000	4.14	0.15	22.40	0.33
2001	2.50	0.04	24.12	0.38
2002	1.37	0.01	13.83	0.24
2003	4.15	0.15	13.83	0.24
2004	1.74	0.06	21.00	0.43
2005	3.02	0.07	24.20	0.60
2006	4.33	0.13	26.91	0.62
2007	3.63	0.11	34.31	0.89
2008	1.62	0.02	26.54	0.55
2009	4.77	0.10	29.00	0.53
2010	2.39	0.04	23.33	0.52
2011	1.97	0.03	21.33	0.45
2012	2.27	0.06	24.62	0.60
2013	3.80	0.14	17.67	0.38
2014	3.75	0.12	19.98	0.28
2015	1.36	0.04	12.82	0.40
2016	3.40	0.11	11.92	0.28

Figure 19c: Severity rate over the last 30 years



Figure 19b: Frequency rate over the last 30 years

Comments on Figure 19a:

2016	Number of accidents	Number of accidents leading to absence	Number of days of absence
Employed members of the personnel	103	32	1 059.1
Associated members of the personnel	53	na	na
CERN Contractors	78	31	716.5

The frequency and severity rates are calculated as followed:

Fraguanay Pata -	Number of accidents with days off	- x 1,000,000	
Frequency Rate =	Number of hours worked per year		
Severity Rate =	Number of days off	— x 1,000	
	Number of hours worked per year		

For associated members of the personnel, CERN has no knowledge of the number of working hours, nor of the number of days off following an occupational accident. Therefore, CERN cannot calculate the evolution of the frequency and severity rates for this category of personnel.

8. LIST OF ACRONYMS

	Acronym	Meaning	Complementary information
Α	AAAS	American Association for the Advancement of Science	
	AARC	Authentication and Authorisation for Research and Collaboration	
	ACT	ALICE Configuration Tool	
	AD	Antiproton Decelerator	Decelerator in use since 2000, decelerating the antiproton beam from the Momentum of 3.57 GeV/c to 100 MeV/c.
	AF	Architects Forum	Coordination of common application – part of the LHC Grid organisation
	ALARA	As Low As Reasonably Achievable	Concept or philosophy that assumes that there is no "safe" dose of radiation. Under this assumption, the probability for harmful biological effects increases with increased radiation dose, no matter how small. Therefore, it is important to keep radiation doses to affected populations (for example, radiation workers, minors, visitors, students, members of the general public, etc.) as low as is reasonably achievable.
	ALICE	A Large Ion Collider Experiment	Experiment at the LHC
	ATF	Accelerator Test Facility	
	ATLAS	A Toroidal LHC ApparatuS	Experiment at the LHC
	ATS	Accelerator and Technology sector	
	AWAKE	Advanced WAKefield Experiment	The AWAKE project has been proposed as an approach to accelerate an electron beam to the TeV energy regime in a single plasma section.
В	BASE	Baryon Antibaryon Symmetry Experiment	
ľ	β*	Beam size at the interaction point	

	Acronym	Meaning	Complementary information
	BE	Beams department	
	BE-RF	BE Radio-Frequency group	
	BRIL	CMS Beam Radiation Instrumentation and Luminosity	
С	CAD	Computer-Aided Design	
	CAE	Computer-Aided Engineering	
	CALICE	CAlorimeter for LInear Collider Experiment	Collaboration to develop new, high performance detectors for high energy positron- electron experiments at future International Linear Collider
	CAST	CERN Axion Solar Telescope	A solar axion search using a decommissioned LHC test magnet.
	СВ	Collaboration Board	
	CBD	Cumulative Budget Deficit	
	CDR	Conceptual Design Report	
	CERN	Conseil Européen pour la Recherche Nucléaire	European Organization for Particle physics.
	CESSAMag	CERN-EC Support for SESAME Magnets	
	CLIC	Compact Linear Collider	
	CLICdp	CLIC Detector and Physics study	
	CLOUD	PS 215 experiment or CLOUD (Cosmics Leaving Outdoor Droplets)	A study of the link between cosmic rays and clouds with a cloud chamber at the CERN PS.
	CMASC	CERN Medical Applications Steering Committee	

D

Acronym	Meaning	Complementary information
CMOS	Complementary Metal-Oxide Semiconductor	
CMS	Compact Muon Solenoid	Experiment at the LHC.
CNGS	CERN Neutrino to Gran Sasso	Experiment aimed at investigating the neutrino oscillations.
COMPASS	Common Muon and Proton Apparatus for Structure and Spectroscopy (NA58 experiment)	High-energy physics experiment at the Super Proton Synchrotron (SPS).
СР	Charge and Parity	
CPU	Central Processing Unit	
C-RRB	(LHC) Computing Resources Review Board	
C-RSG	Computing Resources Scrutiny Group	
CtC	Cost-to-Completion	
CTF3	CLIC Test Facility	
CVI	Cost Variation Index	
DAQ	Data Acquisition System	
DCAL	ALICE Di-jet Calorimeter	
DCS	Detector Control System	
DG	Director-General	
DG CNECT	Directorate-General for Communications Networks, Content and Technology (EU)	

	Acronym	Meaning	Complementary information
	DG RTD	Directorate-General for Research and Innovation (EU)	
	DOE	Department of Energy (USA)	
	DQW	Double-Quarter Wave	
	DUNE	Deep Underground Neutrino Experiment	
Е	EA	East Area	
	EAR-2	Experimental Area 2	New experimental area for n_TOF.
	EC	European Commission	
	ECAL	Electromagnetic CALorimeter	Calorimeter part of CMS.
	ECS	Experiment Control System	
	EDMS	Engineering Data Management Service	
	EGI-ENGAGE	Engaging the Research Community towards an Open Science Commons	
	EHN1		The Experimental Hall located on the Prevessin site, the largest surface hall at CERN
	ELENA	Extra Low Energy Antiprotons	ELENA is a compact ring for cooling and further deceleration of 5.3 MeV antiprotons delivered by the CERN Antiproton Decelerator (AD).
	EN	Engineering department	
	EN-MME	EN Mechanical & Materials Engineering group	
	EP	Experimental Physics Department	

F

Acronym	Meaning	Complementary information
EP-DT	EP Detector Technologies group	
EP-ESE	EP Electronic Systems to Experiments group	
EP-SFT	EP SoFTware Development for Experiments group	
ERP	Enterprise Resource Planning	
ESOF	EuroScience Open Forum	
ESPP	European Strategy for Particle Physics	
ESS	European Spallation Source	Project to realise a research centre in Lund (Sweden) for the study of materials using beams of slow neutrons.
EU	European Union	EU is used in this document as short form for EU commission supported project.
EUDAT2020		Horizon 2020 project EUDAT: the collaborative Pan-European infrastructure providing research data services, training and consultancy for researches, research communities and research infrastructures and data centers
EVM	Earned Value Management	
EYETS	Extended Year End Technical Stop	Technical stop end of 2016-april 2017
FAP	Finance and Administrative Processes Department	
fb-1	Inverse Femtobarn	A measure of the integrated luminosity.
FCC	Future Circular Collider	
FELs	Free Electron Lasers	
FIPOI	Fondation des Immeubles Pour les Organisations Internationales	Non-profit organization in Geneva to help International Organizations with office space via financing solutions, renting and consulting.

	Acronym	Meaning	Complementary information
	FNAL	Fermi National Accelerator Laboratory (Fermilab)	
	FP7	Framework Program 7	
	FSU	Field Support Unit	
	FTA	Active Full Time Equivalent	This includes everybody who is not unavailable due to leave entitlements built up in the past.
	FTE	Full Time Equivalent	
G	GBAR	Gravitational Behavior of Antihydrogen at Rest	Research program with the Antiproton Decelerator (AD) allowing to prepare a measurement of the effect of gravity on antihydrogen atoms.
	GDB	Grid Deployment Board	Dedicated board for the Worldwide LHC Computing Grid.
	GDPR	General Data Protection Regulation	
	GEM	Gas Electron Multiplier	
	GeV	Giga electron Volt	
	GLIMOS	Group Leader In Matters Of Safety	
Н	HCAL	Hadron Calorimeter	
	HELIOS	HELIcal Orbit Spectrometer	New experiment at HIE-ISOLDE
	HEP	High-Energy Physics	ICHEP (International Conference on HEP), EPS-HEP (Europhysics conference on HEP),IHEP (Institute for High Energy Physics).
	HE-LHC	Higher-Energy LHC	Higher-energy proton collider.
	HIE-ISOLDE	High Intensity and Energy ISOLDE	
	HFM	High Field Magnets	

T

Acronym	Meaning	Complementary information
HiPIMS	High Power Impulse Magnetron Sputtering	
HL-LHC	High Luminosity LHC	
HLT	High Level Trigger	High-Level Trigger combines and processes the full information from all major detectors of ALICE in a large computer cluster.
HMPID	High Momentum Particle Identification Detector	Part of the ALICE detector.
HNSciCloud	Helix Nebula Science Cloud	
HPC	High Performance Computing Center	
HP-SPL	High-Power Superconducting Proton Linac	
HR	Human Resources department	
HSE	Occupational Health and Safety and Environmental Protection Unit	
HTS	High Temperature Superconductor	
HUG	Hopitaux Universitaires de Genève	
HVAC	Heating Ventilation Airconditioning Cooling	
ICARUS	Imaging Cosmic And Rare Underground Signals	
ICE-DIP	Intel-CERN European Doctorate Industrial Program	European Industrial Doctorate scheme hosted by CERN and Intel Labs Europe
ICT	Information Communication Technology	
ILC	International Linear Collider	

Acronym	Meaning	Complementary information
ILO	Industrial Liaison Officer	
INSPIRE		A new scientific information system for HEP (High-Energy Physics), successor of SPIRE (Spectral and Photometric Imaging Receiver).
INTC	ISOLDE and Neutron Time-of-flight experiments Committee	
IP	Intellectual Property	
IP1, IP2, IP5, IP8	Collision points	IP1: at ATLAS, IP2: at ALICE, IP5: at CMS, IP8: at LHCb.
IPT	Industry, Procurement & Knowledge Transfer	
IR	Interaction Regions	
IR	International Relations sector	
IR-ECO	Education & Communications Group	
ISGTW	International Science Grid This Week	
ISOLDE	On-Line Isotope Mass Separator	Facility dedicated to the production of a large variety of radioactive ion beams for many different experiments in the fields of nuclear and atomic physics, solid-state physics, materials science and life sciences. The facility is located at the PS Booster (PSB).
ISR	Intersecting Storage Rings	
IT	Information Technology department	
ITER	International Thermonuclear Experimental Reactor	
ІТК	Inner Tracker	

	Acronym	Meaning	Complementary information
	ITS	Inner Tracking System	
J	J-PARC	Japan Proton Accelerator Research Complex	
K	KPI	Key Performance Indicator	
	КТ	Knowledge Transfer	
L	LBNF	Long-Baseline Neutrino Facility	
	LC	Linear Collider	
	LCD	Linear Collider Detector	
	LCG	LHC Computing Grid	Global collaboration linking grid infrastructures and computer centres worldwide.
	LEIR	Low Energy Ion Ring	LEIR turns low-intensity ion pulses injected from CERN's LINAC3 into high-density bunches which are accelerated from 4.2 MeV/u to 72 MeV/u.
	LEP	Large Electron Positron (LEP) collider	
	LHC	Large Hadron Collider	http://public.web.cern.ch/public/en/LHC/LHC-en.html
	LHCb	Large Hadron Collider beauty experiment	Experiment at the LHC.
	LHCC	Large Hadron Collider Committee	
	LHCf	Large Hadron Collider forward experiment	Verification of interaction model for very high energy cosmic ray at 1017 eV. The LHCf experiment uses forward particles created inside the LHC as a source to simulate cosmic rays in laboratory conditions.
	LINAC2	LINear Accelerator 2	50 MeV linear accelerator for protons in use since September 1978.
	LINAC3	LINear Accelerator 3	4.2 MeV/u Heavy Ion Linac in use since 1994.

	Acronym	Meaning	Complementary information
	LINAC4	LINear Accelerator 4	160 MeV linear accelerator that is built to replace LINAC2 as injector to the PS Booster (PSB).
	LIU	LHC Injectors Upgrade project	
	LMS	Learning Management System	
	LS1	Long Shutdown 1	Shutdown of the accelerator complex in 2013-2014.
	LS2	Long Shutdown 2	Shutdown of the accelerator complex in 2019-2020.
	LS3	Long Shutdown 3	Shutdown of the accelerator complex in 2023-2025.
Μ	MCHF	Million Swiss Franc	
	M&O	Maintenance and Operation	
	MB	Management Board	
	MEDICIS	Medical isotopes collected from ISOLDE	Recuperation of the dumped CERN protons for the production of medical isotopes in the ISOLDE class A work sector.
	MIND	Magnetised Iron Neutrino Detector	
	MMT	Magnetic Monopole Trapper	
	MoEDAL	Monopole and Exotics Detector At the LHC	Detector of the LHC that searches for the massive stable (or pseudo-stable) particles, such as magnetic monopoles or dyons, produced at the LHC.
	MQXC	2 m long quadrupole of NbTi	
	MTP	Medium-Term Plan	
	MW	MegaWatt	
	mSv	milli Sievert	Measure of the health effect of low levels of ionizing radiation on the human body.

	Acronym	Meaning	Complementary information
Ν	NA58	North Area 58 experiment or COMPASS	Common Muon and Proton Apparatus for Structure and Spectroscopy.
	NA61	North Area 61 experiment or SHINE	Study of Hadron Production in Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS.
	NA62	North Area 62 experiment	Experiment to measure the very rare kaon decay K+-> π + nu nubar.
	NA63		Continued investigation of scattering of high energy particles in crystalline structures
	Nb3Sn	Niobium-Tin	
	NDT	Nuclear Track Detector system (MoEDAL)	
	n_TOF	neutron Time-Of-Flight facility	n_TOF is a pulsed neutron source coupled to a 200 m flight path designed to study neutron-nucleus interactions for neutron kinetic energies ranging from a few meV to several GeV.
0	OB	Overview Board	Dedicated board for LHC computing.
	openAIRE2020	Open Access Infrastructure Research Information	Horizon 2020 project
	OSQAR	Optical Search of QED vacuum magnetic birefringence, Axion and photon Regeneration	
Р	pA collisions	Proton-nucleus collisions	Collisions between one parton from the proton and the color fields of the nucleus.
	P+M	Personnel and Materials	An expression to describe total expenses, i.e. combined expenses in personnel and materials costs.
	Pb ⁸²	Lead ion	
	PCB	Printed Circuit Board	
	PHOS	PHOton Spectrometer	Part of the ALICE detector.

	Acronym	Meaning	Complementary information
	PICSE	Procurement Innovation for Cloud Services in Europe	
	PIMMS-2	Proton Ions Medical Machine Study	
	PIP-II	Proton Improvement Plan-II	Project at Fermilab
	PLM	Product Lifecycle Management	
	рр	proton-proton	
	PS	Proton Synchrotron	
	PSB	Proton Synchrotron Booster	
Q	QA	Quality Assurance	
	QCD	Quantum ChromoDynamics	
R	R2E	Radiation to Electronics	The goal of the R2E Project is to study and propose mitigation actions (e.g. relocation or redesign of equipment, shielding, etc.) with the aim of increasing the mean time between failures of the LHC machine to one week for failures of controls electronics caused by radiation at ultimate beam conditions.
	RCS	Research and Computing sector	
	R&D	Research and Development	
	RAMSES	RAdiation Monitoring System for the Environment and Safety	Radiation Monitoring system developed for LHC based on current industry standards and in use since 2007.
	REX(-ISOLDE)	Radioactive Beam Experiment	REX-ISOLDE is a post-accelerator for radioactive ions produced by ISOLDE to accelerate the 60 keV ions from ISOLDE up to 0.8 - 2.2 MeV/u.
	RF	Radio Frequency	

	Acronym	Meaning	Complementary information
	RFQ	Radio Frequency Quadrupole	
	RICH	Ring Imaging CHerenkov detector	
	RP	Radiation Protection	
S	RRB	Resources Review Board	
	SBN	Short Baseline Neutrino	
	SC	Super Conducting	
	SCM	Super Conducting Magnet R&D	
	SEU	Single Event Upset	
	SHINE	North Area 61 experiment or SHINE	Study of Hadron Production in Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS.
	SHiP	Search for Hidden Particles	
	SMB	Site Management and Buildings	
	SPC	Scientific Policy Committee	
	SPS	Super Proton Synchrotron	
	SPSC	Super Proton Synchrotron Committee	
	SRO	Stakeholder relations office	
	STFC	Science & Technology Facilities Council	
	SURF	Sanford Underground Research Facility	Underground laboratory near <u>Lead</u> , <u>South Dakota</u> , which houses multiple physics experiments in areas such as <u>dark matter</u> and <u>neutrino</u> research

	Acronym	Meaning	Complementary information
т	T2K		Neutrino experiment in Japan designed to investigate how neutrinos change from one flavour to another as they travel. http://t2k-experiment.org/
	TDAQ	Trigger and DAQ	
	TDR	Technical Design Report	
	TE	TEchnology department	
	TE-CRG	Cryogenics Group	
	TE-VSC	Vacuum, Surfaces and Coatings Group	
	TeV	Tera electron Volt	
	ТН	Theoretical Physics (Department)	
	Tier-0	First layer of the computing grid	The first layer is the CERN Computing Centre
	Tier-1	Second layer of the computing grid	These are large computer centres with sufficient storage capacity and with round- the-clock support for the Grid. There are currently 11 of these centres.
	Tier-2	Third layer of the computing grid	The Tier 2s are typically universities and other scientific institutes, which can store sufficient data and provide adequate computing power for specific analysis tasks. There are currently 129 Tier 2 centres globally.
	ТІМ	Technology and Innovation Monitor	
	TMVA	multivariate analysis tools	
	TOF	Time of Flight	
	ТОТЕМ	TOTal cross section, Elastic scattering and diffraction dissociation Measurement at the LHC	Experiment at the LHC.

	Acronym	Meaning	Complementary information
U V W	TPC	Time Projection Chamber	
	TRD	Transition Radiation Detector	
	TSR	Test Storage Ring	
	UNESCO	United Nations Educational Scientific and Cultural Organization	
	VAR	Volt Ampere Reactive	
	VELO	VErtex LOcator detector	Part of the LHCb detector.
	V3Si	Vanadium-Silicon	
	WLCG	Worldwide LHC Computing Grid	
х	xTCA		Flexible and scalable infrastructure for designing complex control and data acquisition systems
Y	YETS	Year End Technical Stop	

